Skip to main content
Log in

Kolaviron ameliorates behavioural deficit and injury to striatal dopaminergic terminals via modulation of oxidative burden, DJ-1 depletion and CD45R+ cells infiltration in MPTP-model of Parkinson’s disease

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disease. Currently, the precise pathogenic detail of PD is not entirely clear and first line therapeutics fail to attenuate the progress of the disease. In this study, we examined the neuroprotective effect of kolaviron, a natural antioxidant and anti-inflammatory biflavonoid from Garcinia kola seed, on behavioural impairment, neurodegeneration, oxidative stress and neuroinflammation in an acute MPTP-induced PD model. Kolaviron mitigated the frequently interrupted MPTP-associated hyperkinesia, inefficient gait, immobility, inability to pay attention to sizable holes on walking path, habitual clockwise rotations characterized with minimal diversion of movements and impaired balance. Also, kolaviron suppressed MPTP-mediated striatal oxidative stress, depletion as well as degeneration of dopaminergic terminals, reduced DJ-1 secretion and upregulated expression of caspase-3. Kolaviron facilitated cytoprotective antioxidant response and prevented MPTP-mediated neuroinflammation by blocking striatal infiltration of peripheral CD45R positive cells. Additionally, kolaviron reversed MPTP-induced inhibition of acetylcholinesterase activity. Together, our study provides evidence that the neuroprotective capacity of kolaviron to modulate striatal degeneration, behavioural impairment, antioxidant/redox imbalance and neuroinflammation implicated in the pathogenesis of PD may involve upregulation of DJ-1 secretion and inhibition of CD45R cells infiltration. Our data recommend kolaviron as a possible neuroprotective strategy in the management of Parkinson’s disease and the associated behavioural complications, albeit the identity of MPTP-associated striatal CD45R infiltrate needs to be further characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abarikwu SO, Farombi EO, Pant AB (2011) Biflavanone-kolaviron protects human dopaminergic SH-SY5Y cells against atrazine induced toxic insult. Toxicol in Vitro 25:848–858. https://doi.org/10.1016/j.tiv.2011.02.005

    Article  CAS  PubMed  Google Scholar 

  • Antipova D, Bandopadhyay R (2017) Expression of DJ-1 in neurodegenerative disorders. Adv Exp Med Biol 1037:25–43

    Article  CAS  Google Scholar 

  • Baird JK, Bourdette D, Meshul CK, Quinn JF (2018) The key role of T cells in Parkinson’s disease pathogenesis and therapy. Park Relat Disord

  • Benner EJ, Banerjee R, Reynolds AD, Sherman S, Pisarev VM, Tsiperson V, Nemachek C, Ciborowski P, Przedborski S, Mosley RL, Gendelman HE (2008) Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One 3:e1376

    Article  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–252

    Article  CAS  Google Scholar 

  • Brochard V, Combadiere B, Prigent A et al (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 119:182–192

    CAS  PubMed  Google Scholar 

  • Brown GR, Nemes C (2008) The exploratory behaviour of rats in the hole-board apparatus: is head-dipping a valid measure of neophilia? Behav Process 78:442–448. https://doi.org/10.1016/j.beproc.2008.02.019

    Article  Google Scholar 

  • Caudal D, Guinobert I, Lafoux A, Bardot V, Cotte C, Ripoche I, Chalard P, Huchet C (2018) Skeletal muscle relaxant effect of a standardized extract of Valeriana officinalis L. after acute administration in mice. J Tradit Complement Med 8:335–340. https://doi.org/10.1016/j.jtcme.2017.06.011

    Article  PubMed  Google Scholar 

  • Cheng HC, Ulane CM, Burke RE (2010) Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol 67:715–725

    Article  Google Scholar 

  • Chung ES, Kim H, Lee G, Park S, Kim H, Bae H (2012) Neuro-protective effects of bee venom by suppression of neuroinflammatory responses in a mouse model of Parkinson’s disease: role of regulatory T cells. Brain Behav Immun 26:1322–1330

    Article  CAS  Google Scholar 

  • Clairborne A (1995) Catalase activity. In handbook of methods for oxygen radical research. CRC Press, Florida

    Google Scholar 

  • Colotla VA, Flores E, Oscos A, Meneses A, Tapia R (1990) Effects of MPTP on Locomotor activity in mice. Neuotoxicol Teratol 12:405–407

    Article  CAS  Google Scholar 

  • Curtin JF, King GD, Barcia C, Liu C, Hubert FX, Guillonneau C, Josien R, Anegon I, Lowenstein PR, Castro MG (2006) Flt3 ligand recruits plasmacytoid dendritic cells to the central nervous system. J Immunol 176:3566–3577

    Article  CAS  Google Scholar 

  • Depboylu C, Schafer MK, Arias-Carrion O et al (2011) Possible involvement of complement factor C1q in the clearance of extracellular neuromelanin from the substantia nigra in Parkinson disease. J Neuropathol Exp Neurol 70:125–132

    Article  CAS  Google Scholar 

  • Double KL, Rowe DB, Carew-Jones FM, Hayes M, Chan DKY, Blackie J, Corbett A, Joffe R, Fung VS, Morris J, Riederer P, Gerlach M, Halliday GM (2009) Anti-melanin antibodies are increased in sera in Parkinson’s disease. Exp Neurol 217:297–301

    Article  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • Farombi EO, Abolaji AO, Farombi TH, Oropo AS, Owoje OA, Awunah MT (2018) Garcinia kola seed biflavonoid fraction (Kolaviron), increases longevity and attenuates rotenone-induced toxicity in Drosophila melanogaster. Pestic Biochem Physiol 145:39–45. https://doi.org/10.1016/j.pestbp.2018.01.002

    Article  CAS  PubMed  Google Scholar 

  • Farombi EO, Awogbindin IO, Farombi TH, Oladele JO, Izomoh ER, Aladelokun OB, Ezekiel IO, Adebambo OI, Abah VO (2019) Neuroprotective role of kolaviron in striatal redo-inflammation associated with rotenone model of Parkinson’s disease. Neurotoxicology 73:132–141. https://doi.org/10.1016/j.neuro.2019.03.005

    Article  CAS  Google Scholar 

  • Farombi EO, Nwokeafor IA (2005) Anti-oxidant mechanisms of Kolaviron: studies on serum lipoprotein oxidation, metal chelation and oxidative damage in rats. Clin Exp Pharm Toxicol 32:667 674667–674

    Article  CAS  Google Scholar 

  • Ghatak S, Trudler D, Dolatabadi N, Ambasudhan R (2018) Parkinson’s disease: what the model systems have taught us so far. J Genet 97:729–751. https://doi.org/10.1007/s12041-018-0960-6

    Article  CAS  PubMed  Google Scholar 

  • Goldberg MS, Pisani A, Haburcak M, Vortherms TA, Kitada T, Costa C, Tong Y, Martella G, Tscherter A, Martins A, Bernardi G, Roth BL, Pothos EN, Calabresi P, Shen J (2005) Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial parkinsonism-linked gene DJ-1. Neuron 45:489–496. https://doi.org/10.1016/j.neuron.2005.01.041

    Article  CAS  PubMed  Google Scholar 

  • Grosch J, Winkler J, Kohl Z (2016) Early degeneration of both dopaminergic and serotonergic axons – a common mechanism in parkinson’s disease. Front Cell Neurosci 10. https://doi.org/10.3389/fncel.2016.00293

  • Haobam R, Sindhu KM, Chandra G, Mohanakumar KP (2005) Swim-test as a function of motor impairment in MPTP model of Parkinson ’ s disease : A comparative study in two mouse strains 163:159–167. https://doi.org/10.1016/j.bbr.2005.04.011

  • Hirsch EC, Hunot S (2009) Neuroinfl ammation in Parkinson ’ s disease: a target for neuroprotection ? Lancet Neurol 8:382–397. https://doi.org/10.1016/S1474-4422(09)70062-6

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Suzuki K, Uchida K, Nakayama H (2011) Different susceptibility to 1-methyl −4-phenylpyridium (MPP+)-induced nigro-striatal dopaminergic cell loss between C57BL/6 and BALB/c mice is not related to the difference of monoamine oxidase-B (MAO-B). Exp Toxic Path 65:153–158

    Article  Google Scholar 

  • Iwu MM (1985) Antihepatoxic constituents of Garcinia kola seeds. Experientia 41:699–700

    Article  CAS  Google Scholar 

  • Jiang T, Li G, Xu J, Gao S, Chen X (2018) The challenge of the pathogenesis of Parkinson’s disease: is autoimmunity the culprit? Front Immunol 9:2047. https://doi.org/10.3389/fimmu.2018.02047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jollow D, Mitchell J, Zampaglione N, Gillette J (1974) Bromobenzene induced liver necrosis: protective role of glutathione and evidence for 3, 4 bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11:151–169

    Article  CAS  Google Scholar 

  • Kaur K, Gill JS, Bansal PK, Deshmukh R (2017) Neuroinflammation - a major cause for striatal dopaminergic degeneration in Parkinson’s disease. J Neurol Sci 381:308–314. https://doi.org/10.1016/j.jns.2017.08.3251

    Article  CAS  PubMed  Google Scholar 

  • Kravitz AV, Kreitzer AC (2012) Striatal mechanisms underlying movement, reinforcement, and punishment. Physiology 27:167–177

    Article  Google Scholar 

  • Leng A, Yee BK, Feldon J, Ferger B (2004) Acoustic startle response, prepulse inhibition, and spontaneous locomotor activity in MPTP-treated mice. Behav Brain Res 154:449–456. https://doi.org/10.1016/j.bbr.2004.03.012

    Article  CAS  PubMed  Google Scholar 

  • Luchtman DW, Shao D, Song C (2009) Physiology & Behavior Behavior, neurotransmitters and inflammation in three regimens of the MPTP mouse model of Parkinson’s disease. Physiol Behav 98:130–138. https://doi.org/10.1016/j.physbeh.2009.04.021

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, Itagaki S, Boyes BE, McGeer EG (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291

    Article  CAS  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  • Montoya CP, Campbell-Hope LJ, Pemberton KD, Dunnett SB (1991) The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats. J Neurosci Methods 36:219–228. https://doi.org/10.1016/0165-0270(91)90048-5

    Article  CAS  PubMed  Google Scholar 

  • Moro C, Torres N, El Massri N et al (2013) Photobiomodulation preserves behaviour and midbrain dopaminergic cells from MPTP toxicity : evidence from two mouse strains. BMC Neurosci 14:40–48

    Article  CAS  Google Scholar 

  • Omotoso GO, Ukwubile II, Arietarhire L, Sulaimon F, Gbadamosi IT (2018) Kolaviron protects the brain in Cuprizone-induced model of experimental multiple sclerosis via enhancement of intrinsic antioxidant mechanisms: possible therapeutic applications? Pathophysiology 25:299–306. https://doi.org/10.1016/j.pathophys.2018.04.004

    Article  CAS  Google Scholar 

  • Onasanwo SA, Velagapudi R, El-Bakoush A, Olajide OA (2016a) Inhibition of neuroinflammation in BV2 microglia by the biflavonoid kolaviron is dependent on the Nrf2/ARE antioxidant protective mechanism. Mol Cell Biochem 414:23–26

    Article  CAS  Google Scholar 

  • Onasanwo SA, Velagapudi R, El-Bakoush A, Olajide OA (2016b) Inhibition of neuroinflammation in BV2 microglia by the biflavonoid kolaviron is dependent on the Nrf2/ARE antioxidant protective mechanism. Mol Cell Biochem 414:23–36. https://doi.org/10.1007/s11010-016-2655-8

    Article  CAS  Google Scholar 

  • Ostrem JL, Galifianakis NB (2010) Overview of common movement disorders. Contin Lifelong Learn Neurol 16:13–48. https://doi.org/10.1212/01.CON.0000348899.02339.9d

    Article  Google Scholar 

  • Owoeye O, Adedara IA, Farombi EO (2018) Pretreatment with taurine prevented brain injury and exploratory behaviour associated with administration of anticancer drug cisplatin in rats. Biomed Pharmacother 102:375–384. https://doi.org/10.1016/j.biopha.2018.03.051

    Article  CAS  Google Scholar 

  • Pandey S, Srivanitchapoom P (2017) Levodopa-induced dyskinesia: clinical features, pathophysiology, and medical management. Ann Indian Acad Neurol 20:190–198

    PubMed  PubMed Central  Google Scholar 

  • Papachroni KK, Ninkina N, Papapanagiotou A, Hadjigeorgiou GM, Xiromerisiou G, Papadimitriou A, Kalofoutis A, Buchman VL (2007) Autoantibodies to alphasynuclein in inherited Parkinson’s disease. J Neurochem 101:749–756

    Article  CAS  Google Scholar 

  • Reinhart F, El N, Daniel M et al (2016) Near - infrared light (670 nm) reduces MPTP - induced parkinsonism within a broad therapeutic time window. Exp Brain Res 234:1787–1794. https://doi.org/10.1007/s00221-016-4578-8

    Article  PubMed  Google Scholar 

  • Repici M, Giorgini F (2019) DJ-1 in Parkinson’s disease: clinical insights and therapeutic perspectives. J Clin Med 8:1377. https://doi.org/10.3390/jcm8091377

    Article  CAS  PubMed Central  Google Scholar 

  • Reynolds AD, Banerjee R, Liu J, Gendelman HE, Lee Mosley R (2007) Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson’s disease. J Leukoc Biol 82:1083–1094

    Article  CAS  Google Scholar 

  • Reynolds AD, Stone DK, Mosley RL, Gendelman HE (2009) Nitrated {alpha}-synuclein-induced alterations in microglial immunity are regulated by CD4+ T cell subsets. J Immunol 182:4137–4149

    Article  CAS  Google Scholar 

  • Ruhela RK, Soni S, Sarma P, Prakash A, Medhi B (2019) Negative geotaxis: an early age behavioral hallmark to VPA rat model of autism. Ann Neurosci 26:25–31. https://doi.org/10.5214/ans.0972.7531.260106

    Article  PubMed  PubMed Central  Google Scholar 

  • Sedelis M, Schwarting RK, Huston JP (2001) Behavioral phenotyping of the MPTP mouse model of Parkinson’s disease. Behav Brain Res 125:109–125

    Article  CAS  Google Scholar 

  • Shan L, Diaz O, Zhang Y, Ladenheim B, Cadet JL, Chiang YH, Olson L, Hoffer BJ, Bäckman CM (2015) L-Dopa induced dyskinesias in Parkinsonian mice: disease severity or l-Dopa history. Brain Res 1618:261–269. https://doi.org/10.1016/j.brainres.2015.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi-Niki K, Niki T, Iguchi-Ariga SMM, Ariga H (2017) Transcriptional regulation of DJ-1. Adv Exp Med Biol 1037:89–95

    Article  CAS  Google Scholar 

  • Theodore S, Cao S, McLean PJ, Standaert DG (2008) Targeted overexpression of human α-synuclein triggers microglial activation and an adaptive immune response in a mouse model of parkinson disease. J Neuropathol Exp Neurol 67:1149–1158. https://doi.org/10.1097/NEN.0b013e31818e5e99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theodore S, Maragos W (2015) 6-Hydroxydopamine as a tool to understand adaptive immune system-induced dopamine neurodegeneration in Parkinson’s disease. Immunopharmacol Immunotoxicol 37:393–399. https://doi.org/10.3109/08923973.2015.1070172

    Article  CAS  PubMed  Google Scholar 

  • Varshney R, Kale R (1990) Effect of calmodulin antagonists on radiation induced lipid peroxidation in microsomes. Int J Radiat Biol 58:733–743

    Article  CAS  Google Scholar 

  • Wolff SP (1994) Ferrous ion oxidation in the presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzym 233:182–189

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the TETFUND National Research Fund, (NRF) 2015 grant awarded to Professor E.O. Farombi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebenezer O. Farombi.

Ethics declarations

Conflict of interest

The authors declare no competing financial statements.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farombi, E.O., Awogbindin, I.O., Owoeye, O. et al. Kolaviron ameliorates behavioural deficit and injury to striatal dopaminergic terminals via modulation of oxidative burden, DJ-1 depletion and CD45R+ cells infiltration in MPTP-model of Parkinson’s disease. Metab Brain Dis 35, 933–946 (2020). https://doi.org/10.1007/s11011-020-00578-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-020-00578-3

Keywords

Navigation