Skip to main content

Advertisement

Log in

Time-delayed influence of urban landscape change on the susceptibility of koalas to chlamydiosis

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Infectious diseases are important in the dynamics of many wildlife populations, but there is limited understanding of how landscape change influences susceptibility to disease.

Objectives

We aimed to quantify the time-delayed influence of spatial and temporal components of landscape change and climate variability on the prevalence of chlamydiosis in koala (Phascolarctos cinereus) populations in southeast Queensland, Australia.

Methods

We used data collected over 14 years (n = 9078 records) from a koala hospital along with time-lagged measures of landscape change and rainfall to conduct spatial and temporal analyses of the influence of landscape and environmental variables on prevalence of chlamydiosis and koala body condition.

Results

Areas with more suitable habitat were associated with higher levels of disease prevalence and better body condition, indicating that koalas were less likely to be impacted by chlamydiosis. More intact landscapes with higher proportions of total habitat are associated with a reduction in prevalence of chlamydiosis and a decrease in body condition. Increased annual rainfall contributed to a decrease in prevalence of chlamydiosis and an increase in body condition. Urbanization was associated with an increase in disease, however the effects of urban landscape change and climate variability on chlamydiosis may not manifest until several years later when overt disease impacts the population via effects upon body condition and reproductive success.

Conclusions

Our study highlights the importance of effects of landscape change and climate variability on disease prevalence in wildlife. This recognition is essential for long-term conservation planning, especially as disease often interacts with other threats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams-Hosking C, McBride MF, Baxter G, Burgman M, de Villiers D, Kavanagh R, Lawler I, Lunney D, Melzer A, Menkhorst P, Molsher R, Moore BD, Phalen D, Rhodes JR, Todd C, Desley W, McAlpine CA (2016) Use of expert knowledge to elicit population trends for the koala (Phascolarctos cinereus). Div Distrib 22:249–262

    Article  Google Scholar 

  • Ahlering MA, Millspaugh JJ, Woods RJ, Western D, Eggert LS (2011) Elevated levels of stress hormones in crop-raiding male elephants. Anim Conserv 14:124–130

    Article  Google Scholar 

  • Bairagi N, Roy PK, Chattopadhyay J (2007) Role of infection on the stability of a predator-prey system with several response functions—a comparative study. J Theor Biol 248:10–25

    Article  CAS  PubMed  Google Scholar 

  • Blaustein AR, Gervasi SS, Johnson PTJ, Hoverman JT, Belden LK, Bradley PW, Xie GY (2012) Ecophysiology meets conservation: understanding the role of disease in amphibian population declines. Philos Trans R Soc B 367:1688–1707

    Article  Google Scholar 

  • Booth GD, Niccolucci MJ, Schuster EG (1994) Identifying proxy sets in multiple linear regression: an aid to better coefficient interpretation. Research paper INT-470. United States Department of Agriculture, Forest Service, Ogden, USA

  • Brearley G, McAlpine C, Bell S, Bradley A (2012) Influence of contrasting urban edges on arboreal mammal stress: a case study of squirrel gliders in southeast Queensland, Australia. Landscape Ecol 27:1407–1419

    Article  Google Scholar 

  • Brearley G, Rhodes JR, Bradley A, Baxter GS, Seabrook L, Lunney D, Liu Y, McAlpine C (2013) Wildlife disease prevalence in human-modified landscapes: a review. Biol Rev 88:427–442

    Article  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Carrick FN, Girjes AA, Melzer A, Ellis WA (1990) Prevalence of chlamydial infection in a relatively undisturbed koala population. In: Gordon G (ed) Koalas. Research for management. Proceedings of the Brisbane Koala Symposium, 22–23 Sep 1990, Brisbane

  • Chapman CA, Gillespie TR, Goldberg TL (2005) Primates and the ecology of their infectious diseases: how will anthropogenic change affect host–parasite interactions? Evol Anthropol 14:134–144

    Article  Google Scholar 

  • Chapman CA, Speirs ML, Gillespie TR, Holland T, Austad KM (2006) Life on the edge: gastrointestinal parasites from the forest edge and interior primate groups. Am J Primatol 68:397–409

    Article  PubMed  Google Scholar 

  • Chasar A, Loiseau C, Valkiunas G, Iezhova T, Smith TB, Sehgal RNM (2009) Prevalence and diversity patterns of avian blood parasites in degraded African rainforest habitats. Mol Ecol 18:4121–4133

    Article  CAS  PubMed  Google Scholar 

  • Clark RW, Marchand MN, Clifford BJ, Stechert R, Stephens S (2011) Decline of an isolated timber rattlesnake (Crotalus horridus) population: interactions between climate change, disease, and loss of genetic diversity. Biol Conserv 144:886–891

    Article  Google Scholar 

  • Cottontail VM, Wellinghausen N, Kalko EKV (2009) Habitat fragmentation and haemoparasites in the common fruit bat, Artibeus jamaicensis (Phyllostomidae) in a tropical lowland forest in Panama. Parasitology 136:1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Crowther MS, Lunney D, Lemon J, Stalenberg E, Wheeler R, Madani G, Ross KA, Ellis M (2014) Climate-mediated habitat selection in an arboreal folivore. Ecography 37:336–343

    Article  Google Scholar 

  • de Castro F, Bolker B (2005) Mechanisms of disease-induced extinction. Ecol Lett 8:117–126

    Article  Google Scholar 

  • de Oliveira SM, Murray PJ, de Villiers DL, Baxter GS (2013) Ecology and movement of urban koalas adjacent to linear infrastructure in coastal south-east Queensland. Aust Mammal 36:45–54

    Article  Google Scholar 

  • Dique DS, Thompson J, Preece HJ, de Villiers DL, Carrick FN (2003a) Dispersal patterns in a regional koala population in south-east Queensland. Wildl Res 30:281–290

    Article  Google Scholar 

  • Dique DS, Thompson J, Preece HJ, Penfold GC, de Villiers DL, Leslie RS (2003b) Koala mortality on roads in south-east Queensland: the koala speed-zone trial. Wildl Res 30:419–426

    Article  Google Scholar 

  • Dudaniec RY, Rhodes J, Worthington Wilmer J, Lyons M, Lee K, McAlpine C, Carrick F (2013) Using multi-level models to identify drivers of landscape genetic structure among management areas. Mol Ecol 22:3752–3765

    Article  PubMed  Google Scholar 

  • Ellis WAH, Girjes AA, Carrick FN, Melzer A (1993) Chlamydial infections in koalas under relatively little alienation pressure. Aust Vet J 70:427–428

    Article  CAS  PubMed  Google Scholar 

  • Engle RF (ed) (1984) Wald, likelihood ratio, and Lagrange multiplier tests in Econometrics. Elsevier Science Publishers B.V, Amsterdam

    Google Scholar 

  • Evans KL, Gaston KJ, Sharp SP, McGowan A, Simeoni M, Hatchwell BJ (2009) Effects of urbanisation on disease prevalence and age structure in blackbird Turdus merula populations. Oikos 118:774–782

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fischer C, Reperant LA, Weber JM, Hegglin D, Deplazes P (2005) Echinococcus multilocularis infections of rural, residential and urban foxes (Vulpes vulpes) in the canton of Geneva, Switzerland. Parasite 12:339–346

    Article  CAS  PubMed  Google Scholar 

  • Friggens MM, Beier P (2010) Anthropogenic disturbance and the risk of flea-borne disease transmission. Oecologia 164:809–820

    Article  PubMed  Google Scholar 

  • Folstad I, Karter AJ (1992) Parasites, bright males and the immunocompetence handicap. Am Nat 139(3):603–622

    Article  Google Scholar 

  • Geue D, Partecke J (2008) Reduced parasite infestation in urban Eurasian blackbirds (Turdus merula): a factor favoring urbanization? Can J Zool 86:1419–1425

    Article  Google Scholar 

  • Gibbs SEJ, Wimberly MC, Madden M, Masour J, Yabsley MJ, Stallknecht DE (2006) Factors affecting the geographic distribution of West Nile virus in Georgia, USA: 2002–2004. Vector-borne Zoonotic 6:73–82

    Article  Google Scholar 

  • Gillespie TR, Chapman CA (2008) Forest fragmentation, the decline of an endangered primate, and changes in host-parasite interactions relative to an unfragmented forest. Am J Primatol 70:222–230

    Article  PubMed  Google Scholar 

  • Girjes AA, Hugall AF, Timms P, Lavin MF (1988) Two distinct forms of Chlamydia psittaci associated with disease and infertility in Phascolarctos cinereus (koala). Infect Immun 56:1897–1900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon G, Brown AS, Pulsford T (1988) A koala (Phascolarctos-cinereus Goldfuss) population crash during drought and heat-wave conditions in southwestern Queensland. Aust J Ecol 13:451–461

    Article  Google Scholar 

  • Gordon G, McGreevy DG, Lawrie BC (1990) Koala populations in Queensland—major limiting factors. In: Lee AK, Handasyde KA, Sanson GD (eds) Biology of the Koala. Surrey Beatty & Sons, Sydney, pp 75–84

    Google Scholar 

  • Griffith JE (2010) Studies into the diagnosis, treatment and management of chlamydiosis in koalas. PhD thesis, The University of Sydney, Sydney, New South Wales

  • Grueber CE, Peel E, Gooley R, Belov K (2016) Genomic insights into a contagious cancer in Tasmanian devils. Trends Genet 31:528–535

    Article  Google Scholar 

  • Halekoh U, Højsgaard S, Yan J (2006) The R package geepack for generalized estimating equations. J Stat Softw 15:1–11

    Article  Google Scholar 

  • Hanger JJ, Bromham LD, McKee JJ, O’Brien TM, Robinson WF (2000) The nucleotide sequence of koala (Phascolarctos cinereus) retrovirus: a novel type C endogenous virus related to gibbon ape leukemia virus. J Virol 74:4264–4272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvell D, Altizer S, Cattadori IM, Harrington L, Weil E (2009) Climate change and wildlife diseases: when does the host matter the most? Ecology 90:912–920

    Article  PubMed  Google Scholar 

  • Hennessy K, Fitzharris B, Bates BC, Harvey N, Howden SM, Hughes L, Salinger J, Warrick R (2007) Australia and New Zealand. Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 507–540

    Google Scholar 

  • Holmes JC (1996) Parasites as threats to biodiversity in shrinking ecosystems. Biodivers Conserv 5:975–983

    Article  Google Scholar 

  • Hume ID (1990) Biological basis for the vulnerability of koalas to habitat fragmentation. In: Lunney D, Urquhart CA, Reed P (eds) Koala summit, managing Koalas in New South Wales. NSW National Parks and Wildlife Service, Hurstville, pp 32–35

    Google Scholar 

  • Isaksson C (2015) Urbanisation, oxidative stress and inflammation: a question of evolving, acclimatizing or coping with urban environmental stress. Funct Ecol. doi:10.1111/1365-2435.12477

    Google Scholar 

  • Jackson M, White N, Giffard P, Timms P (1999) Epizootiology of Chlamydia infections in two free-range koala populations. Vet Microbiol 65:225–234

    Article  Google Scholar 

  • Johnstone CP, Lill A, Reina RD (2011) Response of the agile antechinus to habitat edge, configuration and condition in fragmented forest. PLoS ONE 6:1–15

    Article  Google Scholar 

  • Johnstone CP, Lill A, Reina RD (2012) Does habitat fragmentation cause stress in the agile antechinus? A haematological approach. J Comp Physiol B 182:139–155

    Article  PubMed  Google Scholar 

  • Klein SL (2000) The effects of hormones on sex differences in infection: from genes to behavior. Neurosci Biobehav Rev 24(6):627–638

    Article  CAS  PubMed  Google Scholar 

  • Kollipara A, Polkinghorne A, Wan C, Kanyoka P, Hanger J, Loader J, Callaghan J, Bell A, Ellis W, Fitzgibbon S, Melzer A, Beagley K, Timms P (2013) Genetic diversity of Chlamydia pecorum strains in wild koala locations across Australia and the implications for a recombinant C. pecorum major outer membrane protein based vaccine. Vet Microbiol 167:513–522

    Article  CAS  PubMed  Google Scholar 

  • Lafferty KD, Holt RD (2003) How should environmental stress affect the population dynamics of disease? Ecol Lett 6:654–664

    Article  Google Scholar 

  • Lane KE, Holley C, Hollocher H, Fuentes A (2011) The anthropogenic environment lessens the intensity and prevalence of gastrointestinal parasites in Balinese long-tailed macaques (Macaca fascicularis). Primates 52:117–128

    Article  PubMed  Google Scholar 

  • Larsen S, Vaughan IP, Ormerod SJ (2009) Scale-dependent effect of fine sediments on temperate headwater invertebrates. Freshw Biol 54:203–219

    Article  CAS  Google Scholar 

  • Lehrer EW, Fredebaugh SL, Schooley RL, Mateus-Pinilla NE (2010) Prevalence of antibodies to toxoplasma gondii in woodchucks across an urban–rural gradient. J Wildl Dis 46:977–980

    Article  PubMed  Google Scholar 

  • Liang KY, Zeger S (1986) Longitudinal data analysis using generalized linear models. Biometrika 73:13–22

    Article  Google Scholar 

  • Lunney D, Crowther MS, Wallis I, Foley WJ, Lemon J, Wheeler R, Madani G, Orscheg C, Griffith JE, Krockenberger M, Retamales M, Stalenberg E (2012) Koalas and climate change: a case study on the Liverpool plains, north-west NSW. In: Lunney D, Hutchings P (eds) Wildlife and climate change: towards robust conservation strategies for Australian fauna. Royal Zoological Society of NSW, Mosman, pp 150–168

    Chapter  Google Scholar 

  • Lunney D, Gresser S, O’Neill LE, Mathews A, Rhodes JR (2007) The impact of fire and dogs on koalas at Port Stephens, New South Wales, using population viability analysis. Pac Conserv Biol 13:189–201

    Article  Google Scholar 

  • Lunney D, Jones M, McCallum H (2008) Lessons from the looming extinction of the Tasmanian Devil. Guest editorial. Pac Conserv Biol 14:263–266

    Article  Google Scholar 

  • Lunney D, Stalenberg E, Santika T, Rhodes JR (2014) Extinction in Eden: identifying the role of climate change in the decline of the koala in south-eastern NSW. Wildl Res 41:22–34

    Article  Google Scholar 

  • Lunney D, Wells A, Miller I (2016) An ecological history of the Koala in Coffs Harbour and its environs, on the mid-north coast of New South Wales, c1861–2000. Proc Linn Soc NSW 138:1–48

    Google Scholar 

  • Lyons MB, Phinn SR, Roelfsema CM (2012) Long term land cover and seagrass mapping using landsat and object-based image analysis from 1972 to 2010 in the coastal environment of South East Queensland, Australia. ISPRS J Photogramm 71:34–46

    Article  Google Scholar 

  • MacPhee RDE, Greenwood AD (2013) Infectious disease endangerment, and extinction. Int J Evol Biol 2013:1–9

    Article  Google Scholar 

  • Martin LB (2009) Stress and immunity in wild vertebrates: timing is everything. Gen Comp Endocr 163:70–76

    Article  CAS  PubMed  Google Scholar 

  • Martin R, Handasyde K (1999) The koala: natural history, conservation and management, 2nd edn. University of NSW Press, Kensington

    Google Scholar 

  • Matthews A, Lunney D, Gresser S, Maitz W (2016) Movement patterns of koalas in remnant forest after fire. Aust Mammal. doi:10.1071/AM14010

    Google Scholar 

  • McAlpine CA, Bowen ME, Callaghan JG, Lunney D, Rhodes JR, Mitchell DL, Pullar DV, Possingham HP (2006a) Testing alternative models for the conservation of koalas in fragmented rural–urban landscapes. Aust Ecol 31:529–544

    Article  Google Scholar 

  • McAlpine CA, Rhodes JR, Callaghan JG, Bowen ME, Lunney D, Mitchell DL, Pullar DV, Possingham HP (2006b) The importance of forest area and configuration relative to local habitat factors for conserving forest mammals: a case study of koalas in Queensland, Australia. Biol Conserv 132:153–165

    Article  Google Scholar 

  • McAlpine C, Lunney D, Melzer A, Menkhorst P, Phillips S, Phalen D, Ellis W, Foley W, Baxter G, de Villiers D (2015) Conserving koalas: a review of the contrasting regional trends, outlooks and policy challenges. Biol Conserv 192:226–236

    Article  Google Scholar 

  • McAlpine CA, Syktus JI, Ryan JG, Deo RC, McKeon GM, McGowan HA, Phinn SR (2009) A continent under stress: interactions, feedbacks and risks associated with impact of modified land cover on Australia’s climate. Glob Change Biol 15:2206–2223

    Article  Google Scholar 

  • McCallum H, Dobson A (1995) Detecting disease and parasite threats to endangered species and ecosystems. Trends Ecol Evol 10:190–194

    Article  CAS  PubMed  Google Scholar 

  • Melzer A, Carrick F, Menkhorst P, Lunney D, John BS (2000) Overview, critical assessment, and conservation implications of koala distribution and abundance. Conserv Biol 14:619–628

    Article  Google Scholar 

  • Melzer A, Houston W (2001) An overview of the understanding of koala ecology: how much more do we need to know? In: Lyons K, Melzer A, Carrick F, Lamb D (eds) The research and management of non-urban koala populations. Central Queensland University, Rockhampton, pp 6–45

    Google Scholar 

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145

    Article  Google Scholar 

  • Moore BD, Foley WJ (2000) A review of feeding and diet selection in koalas (Phascolarctos cinereus). Aust J Zool 48:317–333

    Article  Google Scholar 

  • Moore BD, Foley WJ (2005) Tree use by koalas in a chemically complex landscape. Nature 435:488–490

    Article  CAS  PubMed  Google Scholar 

  • Narayan EJ, Williams M (2016) Understanding the dynamics of physiological impacts of environmental stressors on Australian marsupials, focus on the koala (Phascolarctos cinereus). BMC Zool 1(1):2

    Article  Google Scholar 

  • Phillips SS (2000) Population trends and the koala conservation debate. Conserv Biol 14:650–659

    Article  Google Scholar 

  • Plowright RK, Sokolow SH, Gorman ME, Daszak P, Foley JE (2008) Causal inference in disease ecology: investigating ecological drivers of disease emergence. Front Ecol Environ 6:420–429

    Article  Google Scholar 

  • Polkinghorne A, Hanger J, Timms P (2013) Recent advances in understanding the biology, epidemiology and control of chlamydial infections in koalas. Vet Microbiol 165:214–223

    Article  PubMed  Google Scholar 

  • Preece HJ (2007) Monitoring and modelling threats to koala populations in rapidly urbanising landscapes: Koala coast, south east Queensland, Australia. PhD thesis, School of Geography, Planning and Architecture, University of Queensland. doi:10.14264/uql.2015.742

  • Queensland Government (2011) Silo climate data. Queensland Governments “The Long Paddock”. http://www.longpaddock.qld.gov.au/silo/ppd/index.php

  • Queensland Herbarium (2011) Regional ecosystem description database (REDD) version 6.0b—January 2011. Department of Environment and Resource Management: Brisbane

  • Rhodes JR, Beyer HL, Preece HJ, McAlpine CA (2015) South East Queensland Koala population modelling study. UniQuest, Brisbane

    Google Scholar 

  • Rhodes JR, Ng CF, de Villiers DL, Preece HJ, McAlpine CA, Possingham HP (2011) Using integrated population modelling to quantify the implications of multiple threatening processes for a rapidly declining population. Biol Conserv 144:1081–1088

    Article  Google Scholar 

  • Rhodes JR, Wiegand T, McAlpine CA, Callaghan J, Lunney D, Bowen M, Possingham HP (2006) Modeling species’ distributions to improve conservation in semiurban landscapes: koala case study. Conserv Biol 20:449–459

    Article  PubMed  Google Scholar 

  • Salzer JS, Rwego IB, Goldberg TL, Kuhlenschmidt MS, Gillespie TR (2007) Giardia sp. and Cryptosporidium sp. infections in primates in fragmented and undisturbed forest in western Uganda. J Parasitol 93:439–440

    Article  PubMed  Google Scholar 

  • Santamaria F, Schlagloth RJ (2016) The effect of Chlamydia on translocated Chlamydia-naïve koalas: a case study. Aust Zool. doi:10.7882/AZ.2016.025

    Google Scholar 

  • Santika T, McAlpine CA, Lunney D, Wilson KA, Rhodes JR, Thuiller W (2014) Modelling species distributional shifts across broad spatial extents by linking dynamic occupancy models with public-based surveys. Divers Distrib 20:786–796

    Article  Google Scholar 

  • Simmons GS, Young PR, Hanger JJ, Jones K, Clarke D, McKeed JJ, Meersa J (2012) Prevalence of koala retrovirus in geographically diverse populations in Australia. Aust Vet J 90(10):404–409

    Article  CAS  PubMed  Google Scholar 

  • Smith KF, Acevedo-Whitehouse K, Pedersen AB (2009) The role of infectious diseases in biological conservation. Anim Conserv 12:1–12

    Article  Google Scholar 

  • Su M, Li WL, Li ZZ, Zhang FP, Hui C (2009) The effect of landscape heterogeneity on host-parasite dynamics. Ecol Res 24:889–896

    Article  Google Scholar 

  • Thompson J (2006) The comparative ecology and population dynamics of koalas in the Koala Coast region of south-east Queensland. PhD thesis, The University of Queensland

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66

    Article  Google Scholar 

  • Walsh JF, Molyneux DH, Birley MH (1993) Deforestation—effects on vector-borne disease. Parasitology 106:S55–S75

    Article  PubMed  Google Scholar 

  • Waugh C, Khan SA, Carve S, Hanger J, Loader J, Polkinghorne A, Beagley K, Timms P (2016) A prototype recombinant-protein based Chlamydia pecorum vaccine results in reduced chlamydial burden and less clinical disease in free-ranging koalas (Phascolarctos cinereus). PLoS ONE. doi:10.1371/journal.pone.0146934

    Google Scholar 

  • Weigler B, Girjes A, White N, Kunst N, Carrick F, Lavin M (1988) Aspects of the epidemiology of Chlamydia psittaci infection in a population of koalas (Phascolarctos cinereus) in Southeastern Queensland, Australia. J Wildl Dis 24:282–291

    Article  CAS  PubMed  Google Scholar 

  • Wright A, Gompper M (2005) Altered parasite assemblages in raccoons in response to manipulated resource availability. Oecologia 144:148–156

    Article  PubMed  Google Scholar 

  • Zorn CJW (2001) Generalized estimating equation models for correlated data: a review with applications. Am J Polit Sci 45:470–490

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer Science + Business Media, LLC, New York

    Book  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Queensland Department of Environment and Heritage Protection for funding this study. Many thanks to Hawthorne Beyer, Harriet Preece and Chris Moon for their comments and edits. The input of three anonymous reviewers greatly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonie Seabrook.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1 (DOCX 31 kb)

Online Appendix (PPTX 2372 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McAlpine, C., Brearley, G., Rhodes, J. et al. Time-delayed influence of urban landscape change on the susceptibility of koalas to chlamydiosis. Landscape Ecol 32, 663–679 (2017). https://doi.org/10.1007/s10980-016-0479-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-016-0479-2

Keywords

Navigation