Skip to main content
Log in

Landscape Ecology Meets Disease Ecology in the Tropical America: Patterns, Trends, and Future Directions

  • REVIEW
  • Published:
Current Landscape Ecology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this paper, we synthesize the status and trends of studies assessing the effects of landscape structure and changes on zoonotic and vector-borne disease risk in the Tropical America region (i.e., spanning from Mexico to southern South America). Understanding how landscape structure affects disease emergence is critical to designing prevention measures and maintaining healthy ecosystems for both animals and humans.

Recent Findings

We found that there is a small number of articles being published each year regarding landscape structure and zoonotic and vector borne diseases in the Tropical Americas region, with a slight growing trend after 2013. We identified a large knowledge gap on the subject in most of the countries: in 15 of 27 countries, no article was found, and 72% of the current literature available is concentrated in only three countries (Brazil, Panama, and Colombia). Five diseases represent about 68% of the available knowledge, which compared to over 200 types of known zoonoses and vector-borne diseases, is an extremely low number. Most of the knowledge that exists for the region is about landscape composition, with few studies evaluating configuration parameters.

Summary

In general, landscape changes presented a positive effect on zoonotic and disease risk in most of the studies found, with habitat loss, fragmentation and increases in the amount of edge habitats leading to an increased risk of the diseases investigated. The continued integration of landscape ecology into disease ecology studies can increase the knowledge about how land use change is affecting animals and human health and can allow the establishment of guidelines to create landscapes that have a low pathogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Slingenbergh J, Gilbert M, de Balogh K, Wint W. Ecological sources of zoonotic diseases. Revue Scientifique et Technique de l’OIE. 2004;23:467–84.

    Article  CAS  PubMed  Google Scholar 

  2. WHO. World Health Organization. Zoonoses. 2020.

  3. WHO WHO, FAO F and AO of the UN, WOAH WO for AH. Taking a multisectoral, one health approach: a tripartite guide to addressing zoonotic diseases in countries. 2019.

  4. Taylor LH, Latham SM, woolhouse MEJ. Risk factors for human disease emergence. Philos Trans R Soc Lond B Biol Sci. 2021;356:983–9.

    Article  Google Scholar 

  5. Daszak P, Cunningham AA, Hyatt AD. Emerging infectious diseases of wildlife– threats to biodiversity and human health. Science. 1979;2000(287):443–9.

    Google Scholar 

  6. Jones BA, Grace D, Kock R, Alonso S, Rushton J, Said MY, et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc Natl Acad Sci. 2013;110:8399–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Parrish CR, Holmes EC, Morens DM, Park E-C, Burke DS, Calisher CH, et al. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol Biol Rev. 2008;72:457–70.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Johnson PTJ, Ostfeld RS, Keesing F. Frontiers in research on biodiversity and disease. Ecol Lett. 2015;18:1119–33.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ostfeld R, Glass G, Keesing F. Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol Evol. 2005;20:328–36.

    Article  PubMed  Google Scholar 

  10. LoGiudice K, Ostfeld RS, Schmidt KA, Keesing F. The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc Natl Acad Sci. 2003;100:567–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tran T, Prusinski MA, White JL, Falco RC, Vinci V, Gall WK, et al. Spatio-temporal variation in environmental features predicts the distribution and abundance of Ixodes scapularis. Int J Parasitol. 2021;51:311–20.

    Article  PubMed  Google Scholar 

  12. Keesing F, Ostfeld RS. Impacts of biodiversity and biodiversity loss on zoonotic diseases. Proc Natl Acad Sci. 2021;118(17):e2023540118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tatem AJ, Jia P, Ordanovich D, Falkner M, Huang Z, Howes R, et al. The geography of imported malaria to non-endemic countries: a meta-analysis of nationally reported statistics. Lancet Infect Dis. 2017;17:98–107.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bermejo M, Rodríguez-Teijeiro JD, Illera G, Barroso A, Vilà C, Walsh PD. Ebola Outbreak Killed 5000 Gorillas. Science. 1979;2006(314):1564–1564.

    Google Scholar 

  15. Leroy EM, Rouquet P, Formenty P, Souquière S, Kilbourne A, Froment J-M, et al. Multiple Ebola virus transmission events and rapid decline of central African wildlife. Science. 1979;2004(303):387–90.

    Google Scholar 

  16. Olson SH, Gangnon R, Elguero E, Durieux L, Guégan JF, Foley JA, et al. Links between climate, malaria, and wetlands in the Amazon Basin. Emerg Infect Dis. 2009;15:659–62.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yasuoka J, Levins R. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. Am J Trop Med Hyg. 2007;76:450–60.

    Article  PubMed  Google Scholar 

  18. Vázquez-Reyes LD, del Arizmendi MC, O Godínez-Álvarez H, Navarro-Sigüenza AG. Directional effects of biotic homogenization of bird communities in Mexican seasonal forests. Condor. 2017;119:275–88.

    Article  Google Scholar 

  19. Gibb R, Redding DW, Chin KQ, Donnelly CA, Blackburn TM, Newbold T, et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature. 2020;584:398–402.

    Article  CAS  PubMed  Google Scholar 

  20. Morand S. The role of agriculture in human infectious disease outbreaks. CABI Rev. 2022;2022.

  21. Curtis JR, Robinson WD, Rompré G, Austin SH. Urbanization is associated with unique community simplification among birds in a neotropical landscape. Landsc Ecol. 2022;37:209–31.

    Article  Google Scholar 

  22. Chaves LF, Koenraadt CJM. Climate change and highland malaria: fresh air for a hot debate. Q Rev Biol. 2010;85:27–55.

    Article  PubMed  Google Scholar 

  23. LaDeau SL, Allan BF, Leisnham PT, Levy MZ. The ecological foundations of transmission potential and vector-borne disease in urban landscapes. Funct Ecol. 2015;29:889–901.

    Article  PubMed  PubMed Central  Google Scholar 

  24. McIntyre KM, Setzkorn C, Hepworth PJ, Morand S, Morse AP, Baylis M. Systematic assessment of the climate sensitivity of important human and domestic animals pathogens in Europe. Sci Rep. 2017;7:7134.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mason SD, Sherratt SCR, Kruguer SM, Muthersbaugh M, Harris JP, Gatlin WC, et al. Multi-scale analysis of habitat fragmentation on small-mammal abundance and tick-borne pathogen infection prevalence in Essex County. MA PLoS One. 2022;17: e0269768.

    Article  CAS  PubMed  Google Scholar 

  26. Prist PR, Andreazzi CS, Vidal M, Zambrana-Torrelio C, Daszak P, Carvalho RL, et al. Promoting landscapes with a low zoonotic disease risk through forest restoration: the need for comprehensive guidelines. J App Ecol In press. 2023.

  27. Morrone JJ. Biogeographical regionalisation of the Neotropical region. Zootaxa. 2014;3782:1–25.

    Article  PubMed  Google Scholar 

  28. Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P. Host and viral traits predict zoonotic spillover from mammals. Nature. 2017;546:646–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Purvis A, Molnar Z, Obura D, Ichii K, Willis K, Chettri N, et al. Status and trends – nature. In: Brondízio ES, Settele J, Díaz S, Ngo HT, editors., et al., Global assessment report of the Intergovernmental Science- Policy Platform on Biodiversity and Ecosystem Services. Bonn, Germany: IPBES secretariat; 2022. p. 108.

    Google Scholar 

  30. Carlson CJ, Albery GF, Merow C, Trisos CH, Zipfel CM, Eskew EA, et al. Climate change increases cross-species viral transmission risk. Nature. 2022;607:555–62.

    Article  CAS  PubMed  Google Scholar 

  31. Allen T, Murray KA, Zambrana-Torrelio C, Morse SS, Rondinini C, Di Marco M, et al. Global hotspots and correlates of emerging zoonotic diseases. Nat Commun. 2017;8:1124.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guégan J-F, Ayouba A, Cappelle J, de Thoisy B. Forests and emerging infectious diseases: unleashing the beast within. Environ Res Lett. 2020;15: 083007.

    Article  Google Scholar 

  33. Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, Holt RD, et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature. 2010;468:647–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8:19–32.

    Article  Google Scholar 

  35. Levac D, Colquhoun H, O’Brien KK. Scoping studies: advancing the methodology. Implement Sci. 2010;5:69.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Grames EM, Stillman AN, Tingley MW, Elphick CS. An automated approach to identifying search terms for systematic reviews using keyword co-occurrence networks. Methods Ecol Evol. 2019;10:1645–54.

    Article  Google Scholar 

  37. Loaiza JR, Dutari LC, Rovira JR, Sanjur OI, Laporta GZ, Pecor J, et al. Disturbance and mosquito diversity in the lowland tropical rainforest of central Panama. Sci Rep. 2017;7:7248.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tirera S, de Thoisy B, Donato D, Bouchier C, Lacoste V, Franc A, et al. The influence of habitat on viral diversity in neotropical rodent hosts. Viruses. 2021;13:1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Solórzano-García B, White JM, Shedden A. Parasitism in heterogeneous landscapes: association between conserved habitats and gastrointestinal parasites in populations of wild mammals. Acta Trop. 2023;237: 106751.

    Article  PubMed  Google Scholar 

  40. Ostfeld RS, Keesing F. Biodiversity and disease risk: the case of lyme disease. Conserv Biol. 2000;14:722–8.

    Article  Google Scholar 

  41. Ribeiro Prist P, Reverberi Tambosi L, Filipe Mucci L, Pinter A, de Pereira Souza R, de Lara Muylaert R, et al. Roads and forest edges facilitate yellow fever virus dispersion. J App Ecol. 2022;59(4):17.

    Google Scholar 

  42. Scinachi CA, Takeda GACG, Mucci LF, Pinter A. Association of the occurrence of Brazilian spotted fever and Atlantic rain forest fragmentation in the São Paulo metropolitan region. Brazil Acta Trop. 2017;166:225–33.

    Article  PubMed  Google Scholar 

  43. Chaves LSM, Conn JE, López RVM, Sallum MAM. Abundance of impacted forest patches less than 5 km2 is a key driver of the incidence of malaria in Amazonian Brazil. Sci Rep. 2018;8:7077.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Adorno BR, Santos LAC, de Silva ACL, de Souza MMO, de Neto S, Melo C. O desmatamento, o uso do solo do Cerrado e a incidência de leishmaniose visceral, malária e febre amarela no Estado de Goiás. Revista Brasileira de Geografia Física. 2022;15:2853–86.

    Article  Google Scholar 

  45. Andreazzi CS, Martinez‐Vaquero LA, Winck GR, Cardoso TS, Teixeira BR, Xavier SCC, et al. Vegetation cover and biodiversity reduce parasite infection in wild hosts across ecological levels and scales. Ecography. 2023;2023:e06579. https://doi.org/10.1111/ecog.06579.

  46. Buzanovsky LP, Sanchez-Vazquez MJ, Maia-Elkhoury ANS, Werneck GL. Major environmental and socioeconomic determinants of cutaneous leishmaniasis in Brazil - a systematic literature review. Rev Soc Bras Med Trop. 2020;53:e20190291. https://doi.org/10.1590/0037-8682-0291-2019.

  47. Valero NNH, Prist P, Uriarte M. Environmental and socioeconomic risk factors for visceral and cutaneous leishmaniasis in São Paulo. Brazil Science of The Total Environment. 2021;797: 148960.

    Article  CAS  PubMed  Google Scholar 

  48. Yamada K, Valderrama A, Gottdenker N, Cerezo L, Minakawa N, Saldaña A, et al. Macroecological patterns of American Cutaneous Leishmaniasis transmission across the health areas of Panamá (1980–2012). Parasite Epidemiol Control. 2016;1:42–55.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rondón S, León C, Link A, González C. Prevalence of Plasmodium parasites in non-human primates and mosquitoes in areas with different degrees of fragmentation in Colombia. Malar J. 2019;18:276.

    Article  PubMed  PubMed Central  Google Scholar 

  50. de Abreu FVS, de Andreazzi CS, Neves MSAS, Meneguete PS, Ribeiro MS, Dias CMG, et al. Ecological and environmental factors affecting transmission of sylvatic yellow fever in the 2017–2019 outbreak in the Atlantic Forest. Brazil Parasit Vectors. 2022;15:23.

    Article  PubMed  Google Scholar 

  51. Gonzalez-Daza W, Muylaert R, Sobral-Souza T, Lemes-Landeiro V. Malaria risk drivers in the brazilian amazon: land use—land cover interactions and biological diversity. Int J Environ Res Public Health 2023;20:6497. https://doi.org/10.3390/ijerph20156497.

  52. Ilacqua RC, Medeiros-Sousa AR, Ramos DG, Obara MT, Ceretti-Junior W, Mucci LF, et al. Reemergence of yellow fever in Brazil: the role of distinct landscape fragmentation thresholds. J Environ Public Health. 2021;2021:1–7.

    Article  Google Scholar 

  53. Wilk-da-Silva R, Medeiros-Sousa AR, Laporta GZ, Mucci LF, Prist PR, Marrelli MT. The influence of landscape structure on the dispersal pattern of yellow fever virus in the state of São Paulo. Acta Trop. 2022;228: 106333.

    Article  CAS  PubMed  Google Scholar 

  54. Prist PR, Uriarte M, Tambosi LR, Prado A, Pardini R, D´Andrea PS, et al. Landscape, environmental and social predictors of hantavirus risk in São Paulo, Brazil. PLoS One. 2016;11:e0163459.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Prist PR, Andrea PS, Metzger JP. Landscape, climate and hantavirus cardiopulmonary syndrome outbreaks. Ecohealth. 2017;14:614–29.

    Article  PubMed  Google Scholar 

  56. Muylaert R, Sabino-Santos G, Prist P, Oshima J, Niebuhr B, Sobral-Souza T, et al. Spatiotemporal dynamics of hantavirus cardiopulmonary syndrome transmission risk in Brazil. Viruses. 2019;11:1008.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Muylaert RL, Bovendorp RS, Sabino-Santos G, Prist PR, Melo GL, de Priante CF, et al. Hantavirus host assemblages and human disease in the Atlantic Forest. PLoS Negl Trop Dis. 2019;13:e0007655.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kowalewski MM, Salzer JS, Deutsch JC, Raño M, Kuhlenschmidt MS, Gillespie TR. Black and gold howler monkeys (Alouatta caraya) as sentinels of ecosystem health: patterns of zoonotic protozoa infection relative to degree of human-primate contact. Am J Primatol. 2011;73:75–83.

    Article  PubMed  Google Scholar 

  59. Dellicour S, Rose R, Faria NR, Vieira LFP, Bourhy H, Gilbert M, et al. Using viral gene sequences to compare and explain the heterogeneous spatial dynamics of virus epidemics. Mol Biol Evol. 2017;34:2563–71.

    Article  CAS  PubMed  Google Scholar 

  60. Ecke F, Han BA, Hörnfeldt B, Khalil H, Magnusson M, Singh NJ, et al. Population fluctuations and synanthropy explain transmission risk in rodent-borne zoonoses. Nat Commun. 2022;13:7532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Prist PR, Prado A, Tambosi LR, Umetsu F, de Arruda BA, Pardini R, et al. Moving to healthier landscapes: forest restoration decreases the abundance of Hantavirus reservoir rodents in tropical forests. Sci Total Environ. 2021;752: 141967.

    Article  CAS  PubMed  Google Scholar 

  62. Franke M, Gómez-Skarmeta JL. An evolutionary perspective of regulatory landscape dynamics in development and disease. Curr Opin Cell Biol. 2018;55:24–9.

    Article  CAS  PubMed  Google Scholar 

  63. Houet T, Verburg PH, Loveland TR. Monitoring and modelling landscape dynamics. Landsc Ecol. 2010;25:163–7.

    Article  Google Scholar 

  64. Lira PK, Ewers RM, Banks-Leite C, Pardini R, Metzger JP. Evaluating the legacy of landscape history: extinction debt and species credit in bird and small mammal assemblages in the Brazilian Atlantic Forest. J Appl Ecol. 2012;49:1325–33.

    Article  Google Scholar 

  65. Triguero-Mas M, Dadvand P, Cirach M, Martínez D, Medina A, Mompart A, et al. Natural outdoor environments and mental and physical health: relationships and mechanisms. Environ Int. 2015;77:35–41.

    Article  PubMed  Google Scholar 

  66. Wong GKL, Jim CY. Do vegetated rooftops attract more mosquitoes? Monitoring disease vector abundance on urban green roofs. Sci Total Environ. 2016;573:222–32.

    Article  CAS  PubMed  Google Scholar 

  67. Robertson OJ, Radford JQ. Gap-crossing decisions of forest birds in a fragmented landscape. Austral Ecol. 2009;34:435–46.

    Article  Google Scholar 

  68. Villard M-A, Haché S. Conifer plantations consistently act as barriers to movement in a deciduous forest songbird: a translocation experiment. Biol Conserv. 2012;155:33–7.

    Article  Google Scholar 

  69. Cooper JK, Li J, Montagnes DJS. Intermediate fragmentation per se provides stable predator-prey metapopulation dynamics. Ecol Lett. 2012;15:856–63.

    Article  PubMed  Google Scholar 

  70. Andrén H. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos. 1994;71:355–66.

    Article  Google Scholar 

  71. Villard MA, Metzger JP. Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J Appl Ecol. 2014;51:309–18.

    Article  Google Scholar 

  72. Simon JA, Marrotte RR, Desrosiers N, Fiset J, Gaitan J, Gonzalez A, et al. Climate change and habitat fragmentation drive the occurrence of <scp>B</scp> orrelia burgdorferi, the agent of Lyme disease, at the northeastern limit of its distribution. Evol Appl. 2014;7:750–64.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Aryal A, Brunton D, Raubenheimer D. Impact of climate change on human-wildlife-ecosystem interactions in the Trans-Himalaya region of Nepal. Theor Appl Climatol. 2014;115:517–29.

    Article  Google Scholar 

  74. Booth M. Climate change and the neglected tropical diseases. Adv Parasitol. 2018;100:39–126. https://doi.org/10.1016/bs.apar.2018.02.001.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Brownstein JS, Holford TR, Fish D. Effect of climate change on lyme disease risk in North America. Eco Health. 2005;2:38–46.

    PubMed  Google Scholar 

  76. Roy-Dufresne E, Logan T, Simon JA, Chmura GL, Millien V. Poleward expansion of the white-footed mouse (Peromyscus leucopus) under climate change: implications for the spread of lyme disease. PLoS ONE. 2013;8: e80724.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, et al. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci. 2011;108:7460–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bellan SE. The importance of age dependent mortality and the extrinsic incubation period in models of mosquito-borne disease transmission and control. PLoS ONE. 2010;5: e10165.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Crompton O, Corrêa D, Duncan J, Thompson S. Deforestation-induced surface warming is influenced by the fragmentation and spatial extent of forest loss in Maritime Southeast Asia. Environ Res Lett. 2021;16: 114018.

    Article  Google Scholar 

  80. Saager ES, Iwamura T, Jucker T, Murray KA. Deforestation for oil palm increases microclimate suitability for the development of the disease vector Aedes albopictus. Sci Rep. 2023;13:9514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Chaves LF, Cohen JM, Pascual M, Wilson ML. Social exclusion modifies climate and deforestation impacts on a vector-borne disease. PLoS Negl Trop Dis. 2008;2: e176.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Brock PM, Fornace KM, Grigg MJ, Anstey NM, William T, Cox J, et al. Predictive analysis across spatial scales links zoonotic malaria to deforestation. Proc R Soc B: Biol Sci. 2019;286:20182351.

    Article  Google Scholar 

  83. Faust CL, Castellanos AA, Peel AJ, Eby P, Plowright RK, Han BA, Bharti N. Environmental variation across multiple spatial scales and temporal lags influences Hendra virus spillover. J Appl Ecol. 2023;60:1457–67. https://doi.org/10.1111/1365-2664.14415.

    Article  Google Scholar 

  84. Prist PR, Laporta GZ. Landscape ecology and vector-borne diseases in the Amazon. In: Fornace K, Conn J, Sallum MAM, Moreira Chaves LS, Logan J, editors. Planetary health approaches to understand and control vector-borne diseases. the Netherlands.: Brill | Wageningen Academic; 2023.

  85. Kamau J, Ashby E, Shields L, Yu J, Murray S, Vodzak M, et al. The intersection of land use and human behavior as risk factors for zoonotic pathogen exposure in Laikipia County. Kenya PLoS Negl Trop Dis. 2021;15: e0009143.

    Article  CAS  PubMed  Google Scholar 

  86. Daszak P, Zambrana-Torrelio C, Bogich TL, Fernandez M, Epstein JH, Murray KA, et al. Interdisciplinary approaches to understanding disease emergence: the past, present, and future drivers of Nipah virus emergence. Proc Natl Acad Sci. 2013;110:3681–8.

    Article  CAS  PubMed  Google Scholar 

  87. Friant S, Paige SB, Goldberg TL. Drivers of bushmeat hunting and perceptions of zoonoses in Nigerian hunting communities. PLoS Negl Trop Dis. 2015;9: e0003792.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kuzmin IV, Niezgoda M, Franka R, Agwanda B, Markotter W, Breiman RF, et al. Marburg virus in fruit bat. Kenya Emerg Infect Dis. 2010;16:352–4.

    Article  PubMed  Google Scholar 

  89. Bharti AR, Nally JE, Ricaldi JN, Matthias MA, Diaz MM, Lovett MA, et al. Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis. 2003;3:757–71.

    Article  PubMed  Google Scholar 

  90. Morse SS, Mazet JA, Woolhouse M, Parrish CR, Carroll D, Karesh WB, et al. Prediction and prevention of the next pandemic zoonosis. Lancet. 2012;380:1956–65.

    Article  PubMed  PubMed Central  Google Scholar 

  91. da Mata MM, Neves JA, de Medeiros MAT. Hunger and its associated factors in the western Brazilian Amazon: a population-based study. J Health Popul Nutr. 2022;41:36.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Muñoz-Zanzi C, Saavedra F, Otth C, Domancich L, Hott M, Padula P. Serological evidence of hantavirus infection in apparently healthy people from rural and slum communities in southern Chile. Viruses. 2015;7:2006–13.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Bitariho R, Akampurira E, Mugerwa B. Long-term funding of community projects has contributed to mitigation of illegal activities within a premier African protected area, Bwindi impenetrable National Park, Uganda. Conserv Sci Pract. 2022;4(9):e12761. https://doi.org/10.1111/csp2.12761.

  94. Adisasmito WB, Almuhairi S, Behravesh CB, Bilivogui P, Bukachi SA, Casas N, et al. One Health: a new definition for a sustainable and healthy future. PLoS Pathog. 2022;18: e1010537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

RLC was funded by Fapesp 2022/07381–9. PRP is funded by NSF 2225023. MCSM is funded by CNPQ 371133/2023–8. RLM was supported by Bryce Carmine and Anne Carmine (née Percival), through the Massey University Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Raquel L. Carvalho, Renata Muylaert, and Paula R. Prist conceived and designed the research. Matheus C. S. Mancini, Julia Barreto, Ricardo Arrais, Raquel L. Carvalho, Renata Muylaert, and Paula R. Prist performed the literature review. Matheus C. S. Mancini, Julia Barreto, Raquel L. Carvalho, Renata Muylaert, and Paula R. Prist wrote the manuscript. All authors approved the manuscript.

Corresponding author

Correspondence to Paula R. Prist.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mancini, M.C.S., Barreto, J.R., Carvalho, R.L. et al. Landscape Ecology Meets Disease Ecology in the Tropical America: Patterns, Trends, and Future Directions. Curr Landscape Ecol Rep (2024). https://doi.org/10.1007/s40823-024-00096-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40823-024-00096-3

Keywords

Navigation