Skip to main content
Log in

Design of phase change materials based on salt hydrates for thermal energy storage in a range of 4–40 °C

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Melting temperatures and eutectic mixture compositions of LiNO3–LiClO4–H2O, NaNO3–Ca(NO3)2–H2O and NH4NO3–Mn(NO3)2–Mg(NO3)2–H2O systems were predicted using the modified Brunauer, Emmett and Teller (BET) thermodynamic model. For the ternary system with calcium nitrate and for the quaternary system, it was necessary to estimate the Ωij mixing parameters with solid–liquid equilibrium data, which quantify the interaction between the compounds NaNO3–Ca(NO3)2 and NH4NO3–Mn(NO3)2, respectively. The results calculated with the modified BET thermodynamic model show melting temperatures of 28.3 °C and 27.0 °C for the system with lithium perchlorate, 33.2 °C for the system with calcium nitrate and 4.0 °C for the quaternary system. Calculated values were tested experimentally with the T-history method for the LiNO3–LiClO4–H2O and NH4NO3–Mn(NO3)2–Mg(NO3)2–H2O systems and with the DSC method for the NaNO3–Ca(NO3)2–H2O system. The experimental results of eutectic mixtures predicted in this work present a good thermal behavior and can be useful as phase change materials (PCM) for their application in the design and simulation of refrigeration and air conditioning systems in residential and commercial buildings.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hou Y, Vidu R, Stroeve P. Solar energy storage methods. Ind Eng Chem Res. 2011;50:8954–64.

    Article  CAS  Google Scholar 

  2. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev. 2009;13:318–45.

    Article  CAS  Google Scholar 

  3. Prabhu PA, Shinde NN, Patil PS. Review of phase change materials for thermal energy storage applications. Int J Eng Res Appl (IJERA). 2012;3:871–5.

    Google Scholar 

  4. Murat K, Khamid M. Solar energy storage using phase change materials. Renew Sust Energ Rev. 2007;11:1913–65.

    Article  Google Scholar 

  5. Zalba B, Marín JM, Cabeza LF. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23:251–83.

    Article  CAS  Google Scholar 

  6. Farid MM. A review on phase change energy storage: materials and application. Energ Convers Manag. 2004;45:1597–615.

    Article  CAS  Google Scholar 

  7. Hua W, Zhang X, Han X. Preparation of modified sodium acetate trihydrate and the thermodynamic analysis. J Therm Anal Calorim. 2019;136:1173–83.

    Article  CAS  Google Scholar 

  8. He Y, Zhang N, Yuan Y, Cao X, Sun L, Song Y. Improvement of supercooling and thermal conductivity of the sodium acetate trihydrate for thermal energy storage with α-Fe2O3. J Therm Anal Calorim. 2018;133:859–67.

    Article  CAS  Google Scholar 

  9. Gao D, Deng T. Energy storage: preparations and physicochemical properties of solid-liquid phase change materials for thermal energy storage. Curr Res Technol Dev. 2013;1:32–44.

    Google Scholar 

  10. Zeng D, Voigt W. Phase diagram calculation of molten salt hydrates using modified BET equation. Calphad. 2003;27:243–51.

    Article  CAS  Google Scholar 

  11. Zeng D, Liu H, Chen Q. Simulation and prediction of solubility phase diagram for the separation of MgCl2 from LiCl brine using HCl as a salting-out agent. Hydrometallurgy. 2007;89:21–31.

    Article  CAS  Google Scholar 

  12. Ally MR, Braunstein J. Statistical mechanics of multilayer adsorption: electrolyte and water activities in concentrated solutions. J Chem Thermodyn. 1998;30:49–58.

    Article  CAS  Google Scholar 

  13. Voigt W, Deng D. Solid–liquid equilibria in mixtures of molten salt hydrates for the design of heat storage materials. Pure Appl Chem. 2002;74:1909–20.

    Article  CAS  Google Scholar 

  14. Li B, Zeng D, Yin X, Chen Q. Theoretical prediction and experimental determination of room-temperature phase change materials using hydrated salts as agents. J Therm Anal Calorim. 2010;100:685–93.

    Article  CAS  Google Scholar 

  15. Rains OW, Councert R. Liquidus curves of NH4NO3 (aq) calculated from the modified adsorption isotherm model for aqueous electrolytes. Sep Sci Technol. 2006;41:2629–34.

    Article  CAS  Google Scholar 

  16. Schmit H, Rathgeber C, Hennemann P, Hiebler S. Three–step method to determine the eutectic composition of binary and ternary mixtures. J Therm Anal Calorim. 2014;117:595–602.

    Article  CAS  Google Scholar 

  17. Zhou Q, Yin X, Wang Q, Wang C. Phase diagram prediction of the system Mg(NO3)2–MgCl2–H2O as phase change materials. Acta Chim Sinica. 2011;69:1725–30.

    CAS  Google Scholar 

  18. Zhang Y, Jiang Y, Jiang Y. A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase change materials. Meas Sci Technol. 1999;10:201–5.

    Article  Google Scholar 

  19. Rathgeber C, Schmit H, Miró L, Cabeza LF, Gutierrez A, Ushak S, Hiebler S, Hauer A. Analysis of supercooling of phase change materials with increased sample size—comparison of measurements via DSC, T-History and at pilot plant scale. In: The 13th International conference on energy storage. Greenstock, 2015, Beijing China.

  20. Xu X, Zhang X, Zhou S, Wang Y, Lu L. Experimental and application study of Na2SO4·10H2O with additives for cold storage. J Therm Anal Calorim. 2019;136:505–12.

    Article  CAS  Google Scholar 

  21. Chang SJ, Wi S, Jeong SG, Kim S. Analysis on phase transition range of the pure and mixed phase change materials (PCM) using a thermostatic chamber test and differentiation. J Therm Anal Calorim. 2018;131:1999–2004.

    Article  CAS  Google Scholar 

  22. Leitner J, Jurik S. DSC study and thermodynamic modelling of the system paracetamol–o-acetylsalicylic acid. J Therm Anal Calorim. 2017;130:1735–40.

    Article  CAS  Google Scholar 

  23. Gutierrez A, Ushak S, Galleguillos H, Fernandez A, Cabeza LF, Grágeda M. Use of polyethylene glycol for the improvement of the cycling stability of Bischofite as thermal energy storage material. Appl Energy. 2015;154:616–21.

    Article  CAS  Google Scholar 

  24. Ushak S, Gutierrez A, Galleguillos H, Fernandez AG, Cabeza LF, Grágeda M. Thermophysical characterization of a by-product from the non-metallic industry as inorganic PCM. Sol Energ Mat Sol C. 2015;132:385–91.

    Article  CAS  Google Scholar 

  25. Nagano K, Ogawa K, Mochida T, Hayashi K, Ogoshi H. Thermal characteristics of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as a phase change material for effective utilization of urban waste heat. Appl Therm Eng. 2004;24:221–32.

    Article  CAS  Google Scholar 

  26. Abraham M, Abraham MC. Electrolyte and water activities in very concentrated solutions. Electrochim Acta. 2000;46:137–42.

    Article  CAS  Google Scholar 

  27. Zeng D, Ming J, Voigt W. Thermodynamic study of the system (LiCl + LiNO3 + H2O). J Chem Thermodyn. 2008;40:232–9.

    Article  CAS  Google Scholar 

  28. Zeng D, Fan S, Chen S. Phase diagram prediction of systems Mn(NO3)2–M(NO3)n–H2O (M = Ca, Mg and Li) with modified BET model. J Chem Thermodyn. 2004;6:1192–8.

    Google Scholar 

  29. Yin X, Chen Q, Wang W, Zeng D. Phase diagram prediction of the quaternary system LiNO3–Mg(NO3)2–NH4NO3–H2O and research of related phase change materials. Chin J Inorgan Chem. 2012;28:1873–7.

    CAS  Google Scholar 

  30. Linke WF, Seidell A. Solubilities: inorganic and metal-organic compounds. Washington, DC: American Chemical Society; 1965.

    Google Scholar 

  31. Xu Y, Hepler GL. Calorimetric investigation of crystalline, molten, and supercooled Ca(NO3)2∙4H2O and of concentrated Ca(NO3)2 (aq). J Chem Thermodyn. 1993;25:91–7.

    Article  CAS  Google Scholar 

  32. Guo L, Yu X, Gao D, Guo Y, Ma C, Deng T. Synthesis and thermal energy storage properties of a calcium-based room temperature phase change material for energy storage. J Therm Anal Calorim. 2019;135:3215–21.

    Article  CAS  Google Scholar 

  33. Nazir H, Batool M, Osorio FJB, Isaza-Ruiz M, Xu X, Vignarooban K, Phelan P, Kannan AM. Recent developments in phase change material for energy storage applications: a review. Int J Heat Mass Transf. 2019;129:491–523.

    Article  CAS  Google Scholar 

  34. Ushak S, Gutierrez A, Barreneche C, Fernandez AI, Grágeda M, Cabeza LF. Reduction of the subcooling of Bischofite with the use of nucleating agents. Sol Energy Mat Sol C. 2016;157:1011–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by projects CONICYT/FONDAP Nº 15110019 SERC-Chile, CONICYT/ELAC2015/T06-0988 and CONICYT/FONDECYT/REGULAR Nº 1170675.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Ushak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lovera-Copa, J.A., Ushak, S., Reinaga, N. et al. Design of phase change materials based on salt hydrates for thermal energy storage in a range of 4–40 °C. J Therm Anal Calorim 139, 3701–3710 (2020). https://doi.org/10.1007/s10973-019-08655-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08655-1

Keywords

Navigation