Skip to main content
Log in

Investigating the effect of external heat flux and atomic structure on the thermal behavior and phase change process of sodium sulfate/magnesium chloride hexahydrate and paraffin with molecular dynamics simulation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Phase change materials (PCMs) are capable of thermal energy storage since they have a set melting point and a high latent heat of melting. PCMs offer up to 15 times the heat capacity per unit volume compared to conventional storage materials. The results show that laboratory methods were expensive and time-consuming. Therefore, using the molecular dynamics (MD) simulation method, this study investigated the effect of external heat flux (EHF) (0.001–0.005 W m−2) and structural type (paraffin (S2) and sodium sulfate/magnesium chloride hexahydrate (S1)) on the thermal behavior (TB) and phase change process (PCP). The effect of these two factors was investigated on the temperature profile, heat flux (HF), charge, and discharge times. The results showed that the thermal and atomic properties of S1 are better than S2. As a result, the composite of two PCMs improves the properties. Due to its performance and safety, it can be used in industries. On the other hand, the EHF in S1 increases the HF, temperature, charge, and discharge time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

PCM:

Phase change material

S1:

Sodium sulfate/magnesium chloride hexahydrate

S2:

Paraffin

TB:

Thermal behavior

PCP:

Phase change process

HF:

Heat flux

MD:

Molecular dynamics

EHF:

External heat flux

a i :

Acceleration of the particle (m s−2)

ρ β :

An attraction force caused by the presence of particles in the simulated box

ϕ β :

A repulsive force caused by atomic charge density.

k B :

Boltzmann constant (1.380649 × 10−23 J K−1)

F α :

Constant coefficient between 0 and 1

ε ij :

Depth of the potential well (kJ mol−1)

r ij :

Distance between particles (m)

r :

Distance of the particles from each other

U ij :

Electric potential (eV)

σ ij :

Finite distance in which the potential is zero (Å)

J :

Heat flux (Wm2)

m i :

Mass of the particle (g)

N fs :

Number of degrees of freedom

u i :

Potential of a particle (eV)

T :

System temperature (K)

V :

Total volume of particles (Å3)

References

  1. Ismail KA, Lino FA, Machado PLO, Teggar M, Arıcı M, Alves TA, Teles MP. New potential applications of phase change materials: a review. J Energy Storage. 2022. https://doi.org/10.1016/j.est.2022.105202.

    Article  Google Scholar 

  2. Sikiru S, Oladosu TL, Amosa TI, Kolawole SY, Soleimani H. Recent advances and impact of phase change materials on solar energy: a comprehensive review. J Energy Storage. 2022. https://doi.org/10.1016/j.est.2022.105200.

    Article  Google Scholar 

  3. Zhou T, Xiao Y, Liu Y, Lin J, Huang H. Research on cooling performance of phase change material-filled earth-air heat exchanger. Energy Convers Manag. 2018. https://doi.org/10.1016/j.enconman.2018.09.047.

    Article  Google Scholar 

  4. He Q, Wang S, Tong M, Liu Y. Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage. Energy Convers Manag. 2012. https://doi.org/10.1016/j.enconman.2012.04.010.

    Article  Google Scholar 

  5. Jebasingh BE, Arasu AV. A detailed review on heat transfer rate, supercooling, thermal stability and reliability of nanoparticle dispersed organic phase change material for low-temperature applications. Mater Today Energy. 2020. https://doi.org/10.1016/j.mtener.2020.100408.

    Article  Google Scholar 

  6. Umair MM, Zhang Y, Iqbal K, Zhang S, Tang B. Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage—a review. Appl Energy. 2019. https://doi.org/10.1016/j.apenergy.2018.11.017.

    Article  Google Scholar 

  7. Li T, Wu D, He F, Wang R. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage. Int J Heat Mass Transf. 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2017.07.056.

    Article  Google Scholar 

  8. Zhang C, Zhang Z, Ye R, Gao X, Ling Z. Characterization of MgCl2· 6H2O-based eutectic/expanded perlite composite phase change material with low thermal conductivity. Mater. 2018. https://doi.org/10.3390/ma11122369.

    Article  Google Scholar 

  9. Kazemi A, Naseri I, Nasiri M, Bahramian AR. Effect of MgCl2· 6H2O phase change material on thermal insulation performance of carbon aerogels. J Energy Storage. 2017. https://doi.org/10.1016/j.est.2016.12.002.

    Article  Google Scholar 

  10. Dong Y, Wang F, Zhang Y, Shi X, Zhang A, Shuai Y. Experimental and numerical study on flow characteristic and thermal performance of macro-capsules phase change material with biomimetic oval structure. Energy. 2022. https://doi.org/10.1016/j.energy.2021.121830.

    Article  Google Scholar 

  11. Fan Z, Gao Q, Zhao T, Wu Y, Zhang C, Li Z. Preparation and properties of a novel composite phase change material with low supercooling and high thermal conductivity. Soc Sci Res Netw (SSRN). 2023. https://doi.org/10.2139/ssrn.4328138.

    Article  Google Scholar 

  12. Wang J, Yin Y, Wang Y, Huang J. Thermal performance analysis of multi-stage cold storage packed bed with modified phase change material based on Na2SO4· 10H2O. Appl Therm Eng. 2023. https://doi.org/10.1016/j.applthermaleng.2022.119666.

    Article  Google Scholar 

  13. Kalidasan B, Pandey A, Saidur R, Samykano M, Tyagi V. Nano additive enhanced salt hydrate phase change materials for thermal energy storage. Int Mater Rev. 2022. https://doi.org/10.1080/09506608.2022.2053774.

    Article  Google Scholar 

  14. Bhoi S, Banerjee T, Mohanty K. Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF. Fuel. 2014. https://doi.org/10.1016/j.fuel.2014.07.058.

    Article  Google Scholar 

  15. Qiu Y, Zhong W, Shao Y, Yu A. Reactive force field molecular dynamics (ReaxFF MD) simulation of coal oxy-fuel combustion. Powder Technol. 2020. https://doi.org/10.1016/j.powtec.2019.07.103.

    Article  Google Scholar 

  16. Yu Y, Tao Y, He Y-L. Molecular dynamics simulation of thermophysical properties of NaCl–SiO2 based molten salt composite phase change materials. Appl Therm Eng. 2020. https://doi.org/10.1016/j.applthermaleng.2019.114628.

    Article  Google Scholar 

  17. Li Q, Yu Y, Liu Y, Liu C, Lin L. Thermal properties of the mixed n-octadecane/Cu nanoparticle nanofluids during phase transition: a molecular dynamics study. Materials. 2017. https://doi.org/10.3390/ma10010038.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu X, Adibi M, Shahgholi M, Tlili I, Sajadi SM, Abdollahi A, Li Z, Karimipour A. Phase change process in a porous carbon–paraffin matrix with different volume fractions of copper oxide nanoparticles: a molecular dynamics study. J Mol Liq. 2022. https://doi.org/10.1016/j.molliq.2022.120296.

    Article  Google Scholar 

  19. Du Y, Zhou T, Zhao C, Ding Y. Molecular dynamics simulation on thermal enhancement for carbon nano tubes (CNTs) based phase change materials (PCMs). Int J Heat Mass Transf. 2022. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122017.

    Article  Google Scholar 

  20. Zhao C, Tao Y, Yu Y. Thermal conductivity enhancement of phase change material with charged nanoparticle: a molecular dynamics simulation. Energy. 2022. https://doi.org/10.1016/j.energy.2021.123033.

    Article  Google Scholar 

  21. Rao Z, Wang S, Peng F. Molecular dynamics simulations of nano-encapsulated and nanoparticle-enhanced thermal energy storage phase change materials. Int J Heat Mass Transf. 2013. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.065.

    Article  Google Scholar 

  22. Yan X, Zhao H, Feng Y, Qiu L, Lin L, Zhang X, Ohara T. Excellent heat transfer and phase transformation performance of erythritol/graphene composite phase change materials. Compos B Eng. 2022. https://doi.org/10.1016/j.compositesb.2021.109435.

    Article  Google Scholar 

  23. Zhang S, Jin Y, Yan Y. Depression of melting point and latent heat of molten salts as inorganic phase change material: Size effect and mechanism. J Mol Liq. 2022. https://doi.org/10.1016/j.molliq.2021.117058.

    Article  Google Scholar 

  24. Rapaport DC, Rapaport DCR. The art of molecular dynamics simulation. Cambridge: Cambridge University Press; 2004.

    Book  Google Scholar 

  25. Swope WC, Andersen HC, Berens PH, Wilson KR. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys. 1982. https://doi.org/10.1063/1.442716.

    Article  Google Scholar 

  26. Hairer E, Lubich C, Wanner G. Geometric numerical integration illustrated by the Störmer–Verlet method. Acta Numer. 2003. https://doi.org/10.1017/S0962492902000144.

    Article  Google Scholar 

  27. Dunikov D, Malyshenko S, Zhakhovskii V. Corresponding states law and molecular dynamics simulations of the Lennard–Jones fluid. J Chem Phys. 2001. https://doi.org/10.1063/1.1396674.

    Article  Google Scholar 

  28. Berendsen H, Grigera J, Straatsma T. The missing term in effective pair potentials. J Chem Phys. 1987. https://doi.org/10.1021/j100308a038.

    Article  Google Scholar 

  29. Rappé AK, Casewit CJ, Colwell K, Goddard WA III, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 1992. https://doi.org/10.1021/ja00051a040.

    Article  Google Scholar 

  30. Mosavi A, Hekmatifar M, Alizadeh AA, Toghraie D, Sabetvand R, Karimipour A. The molecular dynamics simulation of thermal manner of Ar/Cu nanofluid flow: the effects of spherical barriers size. J Mol Liq. 2020;319:114183. https://doi.org/10.1016/j.molliq.2020.114183.

    Article  CAS  Google Scholar 

  31. Daw MS, Baskes MI. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B. 1984. https://doi.org/10.1103/PhysRevB.29.6443.

    Article  Google Scholar 

  32. Cao J, Liu L, Liu C, He C. Phase transition mechanisms of paraffin in waxy crude oil in the absence and presence of pour point depressant. J Mol Liq. 2022. https://doi.org/10.1016/j.molliq.2021.116989.

    Article  Google Scholar 

  33. Zhang YX, Alizadeh AA, Abed AM, Nasajpour-Esfahani N, Smaisim GF, Hadrawi SK, Zekri H, Baghaei S, Esmaeili S, Wang MX. Investigating the effect of size and number of layers of iron nanochannel on the thermal behavior and phase change process of calcium chloride/sodium sulfate hexa-hydrate with molecular dynamics simulation. J Energy Storage. 2023;62:106762. https://doi.org/10.1016/j.est.2023.106762.

    Article  Google Scholar 

  34. Fethi A, Mohamed L, Mustapha K, Sassi BN. Investigation of a graphite/paraffin phase change composite. Int J Therm Sci. 2015. https://doi.org/10.1016/j.ijthermalsci.2014.09.008.

    Article  Google Scholar 

  35. Pan D, Ovcharenko A, Song W, Qi X. Investigation of lubricant depletion under a continuous heat source using molecular dynamics simulation. Microsyst Technol. 2018. https://doi.org/10.1007/s00542-018-3842-1.

    Article  Google Scholar 

  36. Regin AF, Solanki S, Saini J. Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renew Sust Energ Rev. 2008. https://doi.org/10.1016/j.rser.2007.06.009.

    Article  Google Scholar 

  37. Rathod MK, Banerjee J. Thermal stability of phase change materials used in latent heat energy storage systems: a review. Renew Sust Energ Rev. 2013. https://doi.org/10.1016/j.rser.2012.10.022.

    Article  Google Scholar 

  38. Zalba B, Marın JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003. https://doi.org/10.1016/S1359-4311(02)00192-8.

    Article  Google Scholar 

  39. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev. 2009. https://doi.org/10.1016/j.rser.2007.10.005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Toghraie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamani, M., Toghraie, D., Mehmandoust, B. et al. Investigating the effect of external heat flux and atomic structure on the thermal behavior and phase change process of sodium sulfate/magnesium chloride hexahydrate and paraffin with molecular dynamics simulation. J Therm Anal Calorim 149, 2199–2207 (2024). https://doi.org/10.1007/s10973-023-12826-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-023-12826-6

Keywords

Navigation