Skip to main content
Log in

Superior Latent Heat Eutectic Salt Na2CO3-Li2CO3-LiF for Thermal Energy Storage: Preparation and Performance Investigation

  • Special Column: Recent Advances in PCMs as Thermal Energy Storage in Energy Systems
  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

In this paper, a novel ternary eutectic salt Na2CO3-Li2CO3-LiF was designed and investigated for concentrated solar power (CSP). The FactSage software was used to predict the composition and eutectic point of Na2CO3-Li2CO3-LiF. The microstructure, thermophysical properties, and thermal stability of eutectic salts were experimentally measured using various analytical methods. With a mass ratio of 57%:32%:11%, the eutectic salt exhibited excellent thermal storage properties with a fusion enthalpy of 413 J/g and a melting point of 426.8°C. The excellent thermal stability of the eutectic salt was reflected by a weight loss of only 0.8% at 600°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Obama B., The irreversible momentum of clean energy. Science, 2017, 355: 126–129.

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Turner J.M., The matter of a clean energy future. Science, 2022, 376: 1361.

    Article  ADS  Google Scholar 

  3. Zhang H.L., Baeyens J., Degreve J., et al., Concentrated solar power plants: review and design methodology. Renewable & Sustainable Energy Reviews, 2013, 22: 466–481.

    Article  Google Scholar 

  4. Opolot M., Zhao C.R., Liu M., et al., A review of high temperature (≥500°C) latent heat thermal energy storage. Renewable & Sustainable Energy Reviews, 2022, 160: 112293.

    Article  CAS  Google Scholar 

  5. Woods J., Mahvi A., Goyal A., et al., Rate capability and ragone plots for phase change thermal energy storage. Nature Energy, 2021, 6: 295–302.

    Article  ADS  Google Scholar 

  6. Aftab W., Usman A., Shi J., et al., Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy & Environmental Science, 2021, 14: 4268–4291.

    Article  CAS  Google Scholar 

  7. Xu H., Jiang L., Yuan A., et al., Thermally-stable, solid-solid phase change materials based on dynamic metal-ligand coordination for efficient thermal energy storage. Chemical Engineering Journal, 2021, 421: 129833.

    Article  CAS  Google Scholar 

  8. Sadeghi G., Energy storage on demand: thermal energy storage development, materials, design, and integration challenges. Energy Storage Materials, 2022, 46: 192–222.

    Article  Google Scholar 

  9. Crespo A., Barreneche C., Ibarra M., et al., Latent thermal energy storage for solar process heat applications at medium-high temperatures - a review. Solar Energy, 2019, 192: 3–34.

    Article  ADS  Google Scholar 

  10. Chen Y.Y., Zhao C.Y., Thermophysical properties of Ca(NO3)2-NaNO3-KNO3 mixtures for heat transfer and thermal storage. Solar Energy, 2017, 146: 172–179.

    Article  CAS  ADS  Google Scholar 

  11. Riahi S., Jovet Y., Saman W.Y., et al., Sensible and latent heat energy storage systems for concentrated solar power plants, exergy efficiency comparison. Solar Energy, 2019, 180: 104–115.

    Article  CAS  ADS  Google Scholar 

  12. Sharma A., Tyagi V.V., Chen C.R., et al., Review on thermal energy storage with phase change materials and applications. Renewable & Sustainable Energy Reviews, 2009, 13: 318–345.

    Article  CAS  Google Scholar 

  13. Pielichowska K., Pielichowski K., Phase change materials for thermal energy storage. Progress in Materials Science, 2014, 65: 67–123.

    Article  CAS  Google Scholar 

  14. Graham M., Smith J., Bilton M., et al., Highly stable energy capsules with nano-SiO2 pickering shell for thermal energy storage and release. ACS Nano, 2020, 14: 8894–8901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ding W.J., Bauer T., Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants. Engineering, 2021, 7: 334–347.

    Article  CAS  Google Scholar 

  16. Du L., Ding J., Tian H., et al., Thermal properties and thermal stability of the ternary eutectic salt NaCl-CaCl2-MgCl2 used in high-temperature thermal energy storage process. Applied Energy, 2017, 204: 1225–1230.

    Article  CAS  ADS  Google Scholar 

  17. Lai X., Yin H.Q., Li P., et al., Design optimization and thermal storage characteristics of NaNO3-NaCl-NaF molten salts with high latent heat and low cost for the thermal energy storage. Journal of Energy Storage, 2022, 52: 104805.

    Article  Google Scholar 

  18. Jiang Y.F., Sun Y.P., Liu M., et al., Eutectic Na2CO3-NaCl salt: a new phase change material for high temperature thermal storage. Solar Energy Materials and Solar Cells, 2016, 152: 155–160.

    Article  CAS  Google Scholar 

  19. Liu M., Gomez J.C., Turchi C.S., et al., Determination of thermo-physical properties and stability testing of high-temperature phase-change materials for CSP applications. Solar Energy Materials and Solar Cells, 2015, 139: 81–87.

    Article  CAS  Google Scholar 

  20. Ge Z., Huang Y., Ding Y., Eutectic composition-dependence of latent heat of binary carbonates (Na2CO3/Li2CO3). Solar Energy Materials and Solar Cells, 2018, 179: 202–206.

    Article  CAS  Google Scholar 

  21. Cardenas B., Leon N., High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques. Renewable & Sustainable Energy Reviews, 2013, 27: 724–737.

    Article  CAS  Google Scholar 

  22. Delise T., Tizzoni A.C., Ferrara M., et al., Thermophysical, environmental, and compatibility properties of nitrate and nitrite containing molten salts for medium temperature CSP applications: a critical review. Journal of the European Ceramic Society, 2019, 39: 92–99.

    Article  CAS  Google Scholar 

  23. Mohan G., Venkataraman M., Gomez-Vidal J., Coventry J., Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage. Energy Conversion and Management, 2018, 167: 156–164.

    Article  CAS  Google Scholar 

  24. Kenisarin M.M., High-temperature phase change materials for thermal energy storage. Renewable and Sustainable Energy Reviews, 2010, 14: 955–970.

    Article  CAS  Google Scholar 

  25. Bale C.W., Belisle E., Chartrand P., et al., FactSage thermochemical software and databases - recent developments. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33: 295–311.

    Article  CAS  Google Scholar 

  26. Li Y., Chen X., Wu Y., et al., Experimental study on the effect of SiO2 nanoparticle dispersion on the thermophysical properties of binary nitrate molten salt. Solar Energy, 2019, 183: 776–781.

    Article  CAS  ADS  Google Scholar 

  27. Yu D.K., Xue Z.M., Mu T.C., Eutectics: formation, properties, and applications Chemical Society Reviews, 2021, 50: 8596–8638.

    Article  CAS  PubMed  Google Scholar 

  28. Liu M., McGillicuddy R.D., Vuong H., et al., Network-forming liquids from metal-bis(acetamide) frameworks with low melting temperatures. Journal of the American Chemical Society, 2021, 143: 2801–2811.

    Article  CAS  PubMed  Google Scholar 

  29. Malagueta D., Szklo A., Soria R., et al., Potential and impacts of concentrated solar power (CSP) integration in the brazilian electric power system. Renewable Energy, 2014, 68: 223–235.

    Article  Google Scholar 

  30. Mo S., Mo B., Wu F., et al., Preparation and thermal performance of ternary carbonates/silica microcomposites as phase change materials. Journal of Sol-Gel Science and Technology, 2021, 99: 220–229.

    Article  CAS  Google Scholar 

  31. Wang Y., Li X., Li N., et al., Thermal transport and storage performances of NaCl-KCl-NaF eutectic salt for high temperatures latent heat. Solar Energy Materials and Solar Cells, 2020, 218: 110756.

    Article  CAS  Google Scholar 

  32. Sang L.X., Cai M., Zhao Y.B., et al., Mixed metal carbonates/hydroxides for concentrating solar power analyzed with DSC and XRD. Solar Energy Materials and Solar Cells, 2015, 140: 167–173.

    Article  CAS  Google Scholar 

  33. Cairns E.J., MacDonald D.I., Sensitive thermal analysis establishing formation of the incongruently melting compound LiNaCO3. Nature, 1962, 194(4827): 441–442.

    Article  CAS  ADS  Google Scholar 

  34. Zhang Z.L., Yuan Y.P., Zhang N., et al., Thermal properties enforcement of carbonate ternary via lithium fluoride: a heat transfer fluid for concentrating solar power systems. Renewable Energy, 2017, 111: 523–531.

    Article  CAS  Google Scholar 

  35. Sulejmanovic D., Kurley J.M., Robb K., et al., Validating modern methods for impurity analysis in fluoride salts. Journal of Nuclear Materials, 2021, 553: 152972.

    Article  CAS  Google Scholar 

  36. Wei G., Wang G., Xu C., et al., Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: a review. Renewable & Sustainable Energy Reviews. 2018, 81: 1771–1786.

    Article  CAS  Google Scholar 

  37. Tian H.Q., Wang W.L., Ding J., et al., Thermal performance and economic evaluation of NaCl-CaCl2 eutectic salt for high-temperature thermal energy storage. Energy, 2021, 227: 120412.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

JIN Yi would like to thank the funding support from the National Key Research and Development Plan of China (2018YFA0702300). TAN Linghua would like to thank National Natural Science Foundation of China (NSFC 2151802156), Natural Science Foundation of Jiangsu Province (BK20181302) and the Fundamental Research Funds for the Central Universities (30920041107). DING Yulong would like to thank UK Engineering and Physical Sciences Research Council (EPSRC) for partial support to this project (Grants EP/T022981/1, EP/S032622/1 and EP/P003435/1), as well as the British Council (2020-RLWK12-10478 and 2019-RLWK11-10724).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Jin or Linghua Tan.

Ethics declarations

DING Yulong is an editorial board member for Journal of Thermal Science and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Miao, Q., Zhang, Y. et al. Superior Latent Heat Eutectic Salt Na2CO3-Li2CO3-LiF for Thermal Energy Storage: Preparation and Performance Investigation. J. Therm. Sci. 33, 501–508 (2024). https://doi.org/10.1007/s11630-024-1919-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-024-1919-y

Keywords

Navigation