Skip to main content
Log in

Insight into adsorption behavior of activated ZrO2 prepared by solution combustion for the removal of chromium and barium ions from aqueous solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The prepared activated zirconium oxide was characterized using different analytic techniques and investigated as a new inorganic sorbent to get rid of the chromium and barium ions from the waste stream. Several experiments have been performed, including the impact of contact time, pH, initial ion concentration, temperature, desorption, and the effect of interfering ions. Different isotherm kinetic models were investigated. The outcomes demonstrated that, the second-order kinetic model was appropriate, and the monolayer capacities for the chromium and barium ions were 35.9 and 33.9 mg/g, respectively. Finally, zirconium oxide was recommended to be used as a highly selective adsorbent for hazardous metal ions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hassan HS, Abdel Moamen OA, Zaher AWF (2020) Neuro-Fuzzy inference system analysis on sorption studies of strontium and cesium cations onto a novel impregnated nano-zeolite. Adv Powd Techn 31:1125–1139

    Article  CAS  Google Scholar 

  2. Khorasgani MD, Faghihian H, Givianrad MH, Azar PA, Tehrani MS (2022) Synthesis and application of a novel mesoporous SBA-15 sorbent functionalized by 2,4 dinitrophenyl hydrazine (DNPH) for simultaneous removal of Pb(II), Cr(III), Cd(II) and Co(II) from aqueous solutions: experimental design, kinetic, thermodynamic, and isotherm aspects. Adv Powd Techn 33:103201

    Article  Google Scholar 

  3. Dakroury G, Abo-Zahra SF, Hassan HS, Ali HEA (2020) Improvement of the sorption behavior of aluminum silicate composite toward 134Cs and 60Co radionuclides by non-living biomass of Chlorella vulgaris. Environ Sci Pollu Res 27:21109–21125

    Article  CAS  Google Scholar 

  4. Zhang J, Yan M, Sun G, Liu K (2021) Simultaneous removal of Cu(II), Cd(II), Cr(VI), and rhodamine B in wastewater using TiO2 nanofibers membrane loaded on porous fly ash ceramic support. Separ Purifi Technol 272:118888

    Article  CAS  Google Scholar 

  5. Abdulkhair B, Salih M, Modwi A, Adam F, Elamin N, Seydou M, Rahali S (2021) Adsorption behavior of barium ions onto ZnO surfaces: experiments associated with DFT calculations. J Mol Struct 1223:128991

    Article  CAS  Google Scholar 

  6. Majidnia Z, Idris A, Abd Majid M, Zin RM, Ponraj M (2015) Efficiency of barium removal from radioactive waste water using the combination of maghemite and titanium nanoparticles in PVA and alginate beads. Appl Radit Isotope 05:105–113

    Article  Google Scholar 

  7. Fontana KB, Chaves ES, Kosera VS, Lenzi GG (2018) Barium removal by photo- catalytic process: an alternative for water treatment. J Water Process Eng 22:163–171

    Article  Google Scholar 

  8. Kanwar VS, Sharma A, Srivastav AL, Rani L (2020) Phytoremediation of toxic metals present in soil and water environment: a critical review. Environ Sci Pollut Res 27:44835–44860

    Article  CAS  Google Scholar 

  9. Prasad S, Yadav KK, Kumar S, Gupta N, Cabral-Pinto MMS, Rezania S, Radwan N, Alam J (2021) Chromium contamination and effect on environmental health and its remediation: a sustainable approaches. J Environ Manage 285:112174

    Article  CAS  PubMed  Google Scholar 

  10. Park JE, Shin JH, Oh W, Choi S-J, Kim J, Kim C, Jeon J (2022) Removal of hexavalent chromium(VI) from wastewater using chitosan-coated iron oxide nanocomposite membranes. Toxics 10(2):98. https://doi.org/10.3390/toxics10020098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vital B, Bartacek J, Ortega-Bravo JC, Jeison D (2018) Treatment of acid mine drainage by forward osmosis: heavy metal rejection and reverse flux of draw solution constituents. Chem Eng J 332:85–91

    Article  CAS  Google Scholar 

  12. Hargreaves AJ, Vale P, Whelan J, Alibardi L, Constantino C, Dotro G, Cartmell E, Campo P (2018) Impacts of coagulation-flocculation treatment on the size distribution and bioavailability of trace metals (Cu, Pb, Ni, Zn) in municipal wastewater. Water Res 128:120–128

    Article  CAS  PubMed  Google Scholar 

  13. Chen Q, Liang S, Zhang H, Liu D, Zhuo L (2021) Fabrication and characterization of W-Ni nanocomposites via a facile chemical co-precipitation route. Adv Powder Technol 32(3):908–915

    Article  CAS  Google Scholar 

  14. Attallah MF, Hassan HS, Youssef MA (2019) Synthesis and sorption potential study of Al2O3-ZrO2-CeO2 composite material for removal of some radionuclides from radioactive waste effluent. Appl Radiat Isotop 147:40–47

    Article  CAS  Google Scholar 

  15. Hassan HS, Elmaghraby EK (2019) Retention behavior of cesium radioisotope on poly (acrylamido-sulfonicacid) synthesized by chain polymerization. Appl Radiat Isot 146:40–47

    Article  CAS  PubMed  Google Scholar 

  16. Fawzy MA (2020) Biosorption of copper ions from aqueous solution by Codium Vermilara Optimization, kinetic, isotherm and thermodynamic studies. Adv Powder Technol 31:3724–3735

    Article  CAS  Google Scholar 

  17. Li R, Zhai Z, Li Y, Yang T, Chen Y (2018) Kinetic study of heavy metals Cu and Zn removal during sewage sludge ash calcination in air and N2 atmospheres. J Hazard Mater 347:227–232

    Article  CAS  PubMed  Google Scholar 

  18. Sanad MMS, Farahat MM, Abdel Khalek MA (2021) One-step processing of low cost and superb natural magnetic adsorbent: kinetics and thermodynamics investigation for dye removal from textile wastewater. Adv Powd Technol 32:1573–1583

    Article  CAS  Google Scholar 

  19. Shahrivar J, Gharabaghi M (2020) Separation of AuCN2-by activated carbon and functionalized graphene/activated carbon composite. Adv Powd Technol 31:4648–4656

    Article  CAS  Google Scholar 

  20. Li J, Hui L, Zhang W, Lu J, Yang Y, Feng H (2021) Scalable production of ultra small TiO2 nano crystal/activated carbon composites by atomic layer deposition for efficient removal of organic pollutants. Adv Powd Technol 32:728–739

    Article  CAS  Google Scholar 

  21. Dalmieda J, Kruse P (2019) Metal cation detection in drinking water. Sensors 19(3):5134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hassan HS, Attia LA, Dakroury GA (2020) Exploration of the parameters affecting the radioactive europium removal from aqueous solutions by activated carbon-epoxy composite. Appl Radit Isotop 164:109278

    Article  CAS  Google Scholar 

  23. Mahmoud ME, Saad EA, El-Khatib AM, Soliman MA, Allam EA (2017) Adsorptive removal of Zn(II), Co(II) and their radioactive isotopes 65Zn, 60Co on the surface of sodium nano bentonite coated with oleyl-amine. J Rad Nucl Appl 2(3):87–93

    Article  Google Scholar 

  24. Dakroury GA, Abo-Zahra SF, Hassan HS, Fathy NA (2020) Utilization of silica–chitosan nanocomposite for removal of 152+154Eu radionuclide from aqueous solutions. J Radioanalyt Nucl Chem 323:439–455

    Article  CAS  Google Scholar 

  25. K. Simeonidis K, Martinez-Boubeta C, Zamora-Perez P, Rivera-Gil P, Kaprara E, Kokkinos E, Mitrakas M (2018) Nanoparticles for heavy metal removal from drinking water. In: Environ Nanotech, Springer, 75–124.

  26. Abdel Maksoud MIA, Sami NM, Hassan HS, Bekhit M, Ashour AH (2022) Novel adsorbent based on carbon-modified zirconia/spinel ferrite nanostructures: evaluation for the removal of cobalt and europium radionuclides from aqueous solutions. J Coll Interf Sci 607:111–124

    Article  CAS  Google Scholar 

  27. Abdel Moamen OA, Hassan HS, El-Sherif EA (2017) Binary oxide composite adsorbent for copper, nickel and zinc cations removal from aqueous solutions. Desalin Water Treat 82:219–233

    Article  Google Scholar 

  28. Liu X, Pang H, Liu X, Li Q, Zhang N, Mao L, Qiu M, Hu B, Yang H, Wang X (2021) Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. Innovation 2:100076

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dakroury GA, Ali SM, Hassan HS (2021) Assessment of adsorption performance of chitosan/ZrO2biosorbent composite towards Cs (I) and Co (II) metal ions from aqueous solution. J Polym Res 28:385

    Article  CAS  Google Scholar 

  30. Zhang X, Zhang M, Zhang J, Zhang Q, Tsubaki N, Tan Y, Han Y (2019) Methane decomposition and carbon deposition over Ni/ZrO2 catalysts: comparison of amorphous, tetragonal, and monoclinic zirconia phase. Int J Hydrogen Energy 44(33):17887–17899

    Article  CAS  Google Scholar 

  31. Aziz SB, Karim W, Brza M, Abdulwahid R, Raza SS, Al-Zangana S, Kadir M (2019) Ion transport study in CS: POZ based polymer membrane electrolytes using trukhan model. Int J Mol Sci 20(21):5265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hassan HS, Madcour W, Elmaghraby EK (2019) Removal of radioactive cesium and europium from aqueous solutions using activated Al2O3 prepared by solution combustion. Mater Chem Phys 234:55–66

    Article  CAS  Google Scholar 

  33. Chinchamalatpure VR, Chore SM, Patil SS, Chaudhari GN (2012) Synthesis and electrical characterization of ZrO2 Thin films on Si(100). J Mod Phys 3(1):69–73. https://doi.org/10.4236/jmp.2012.31010

    Article  CAS  Google Scholar 

  34. Deng J, Lid S, Xiong L, Jiao Y, Yuan S, Wang J, Chen Y (2020) Preparation of nanostructured CeO2-ZrO2-based materials with stabilized surface area and their catalysis in soot oxidation. Appl Surf Sci 505:144301

    Article  CAS  Google Scholar 

  35. Sharaf G, Hassan H (2014) Removal of copper ions from aqueous solution using silica derived from rice straw: comparison with activated charcoal. Int J Environ Sci Technol 11:1581–1590

    Article  CAS  Google Scholar 

  36. Ho Y-S, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  37. Dakroury GA, Abo-Zahra ShF, Hassan HS (2020) Utilization of olive pomace in nano MgO modification for sorption of Ni(II) and Cu(II) metal ions from aqueous solutions. Arab J Chem 13:6510–6522

    Article  CAS  Google Scholar 

  38. Abdel Maksoud MIA, Sami NM, Hassan HS, Awed AS (2021) Sorption characteristics of bismuth tungstate nanostructure for removal of some radionuclides from aqueous solutions. Sep Purifi Technol 277:119478

    Article  CAS  Google Scholar 

  39. Yang T, Wang Y, Sheng L, He C, Sun W, He Q (2020) Enhancing Cd(II) sorption by red mud with heat treatment: performance and mechanisms of sorption. J Environ Manag 255:109866

    Article  CAS  Google Scholar 

  40. El-khalafawy A, Imam DM, Youssef MA (2022) Enhanced biosorption of europium and cesium ions from aqueous solution onto phalaris seed peel as environmental friendly biosorbent: equilibrium and kinetic studies. Appl Radiat Isotopes 190:110498

    Article  CAS  Google Scholar 

  41. Panayotova MI (2001) Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite. Waste Manag 21:671–676

    Article  CAS  PubMed  Google Scholar 

  42. Bayramoglu G, Arica MY (2017) Polyethylenimine and tris(2-aminoethyl)amine modified p(GA–EGMA) microbeads for sorption of uranium ions: equilibrium, kinetic and thermodynamic studies. J Radioanal Nucl Chem 312(2):293–303. https://doi.org/10.1007/s10967-017-5216-z

    Article  CAS  Google Scholar 

  43. Arica MY, Bayramoglu G (2016) Polyaniline coated magnetic carboxymethylcellulose beads for selective removal of uranium ions from aqueous solution. J Radioanal Nucl Chem 310(2):711–724. https://doi.org/10.1007/s10967-016-4828-z

    Article  CAS  Google Scholar 

  44. Erkaya IA, Arica MY, Akbulut A, Bayramoglu G (2014) Biosorption of uranium(VI) by free and entrapped Chlamydomonas reinhardtii: kinetic, equilibrium and thermodynamic studies. J Radioanal Nucl Chem 299(3):1993–2003. https://doi.org/10.1007/s10967-014-2964-x

    Article  CAS  Google Scholar 

  45. Youssef MA, Attia LA (2023) Novel nano Rosmarinus officinalis phytomass adsorbent for strontium and europium removal from aqueous solution: batch and packet techniques. J Radioanal Nucl Chem 332:1935–1952. https://doi.org/10.1007/s10967-023-08862-z

    Article  CAS  Google Scholar 

  46. Ouadjenia-Marouf F, Marouf R, Schott J, Yahiaoui A (2013) Removal of Cu(II), Cd(II) and Cr(III) ions from aqueous solution by dam silt. Arab J Chem 11:401–406

    Article  Google Scholar 

  47. Abdel Maksoud MIA, Murad GA, Zaher WF, Hassan HS (2023) Adsorption and separation of Cs(I) and Ba(II) from aqueous solution using zinc ferrite-humic acid nanocomposite. Sci Rep 13:5856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jaegwan S, Jinwoo K, Yong-Gu L, Sangwon K, Changgil S (2021) Changes in adsorption mechanisms of radioactive barium, cobalt, and strontium ions using spent coffee waste biochars via alkaline chemical activation: enrichment effects of O-containing functional groups. Environ Res 199:111346

    Article  Google Scholar 

  49. Kaveeshwar AR, Kumar PS, Revellame ED, Gang DD, Zappi ME, Subramaniam R (2018) Adsorption properties and mechanism of barium(II) and strontium(II) removal from fracking wastewater using pecan shell-based activated carbon. J Cleaner Prod 20:1–13

    Article  Google Scholar 

  50. Hassan SSM, Kamel AH, Youssef MA, Aboterika AHA, Awwad NS (2020) Removal of barium and strontium from wastewater and radioactive wastes using a green bioadsorbent, Salvadora persica (Miswak). Desalin Water Treatm 192:306–314

    Article  CAS  Google Scholar 

  51. Guan X (2022) Remediation and resource utilization of chromium(III)-containing tannery effluent based on chitosan-sodium alginate hydrogel. Carbohydr Polym 284:119179

    Article  CAS  PubMed  Google Scholar 

  52. Fei, Y, Deng, H, Wu, G, Luo, M, Chen, Y, Wang, X, Ye, H, Liu, T (2022) Insight into adsorption process and mechanisms of Cr(III) using carboxymethyl cellulosegpoly( acrylic acid-co-acrylamide)/attapulgite composite hydrogel. Environ Technol. 1–51

  53. Alexis S, Ranjan R, Andrew G, Jason R, Marie J (2023) Selective adsorption of Cr(III) over Cr(VI) by starch-graft-itaconic acid hydrogels. J Hazard Mater Adv 10:100255

    Article  Google Scholar 

  54. Abass MR, Youssef MA, Eid MA (2023) Inorganic composites based on carboxymethyl cellulose: preparation, characterization, sorption, and selectivity behavior for some radionuclides from radioactive solutions. Radiochim Acta. https://doi.org/10.1515/ract-2023-0214

    Article  Google Scholar 

  55. Maleki F, Pacchioni G (2020) Characterization of acid and basic sites on zirconia surfaces and nanoparticles by adsorbed probe molecules: a theoretical study. Top Catal 63:1717–1730. https://doi.org/10.1007/s11244-020-01328-6

    Article  CAS  Google Scholar 

  56. Nagaoka N, Yoshihara K, Feitosa V et al (2017) Chemical interaction mechanism of 10-MDP with zirconia. Sci Rep 7:45563. https://doi.org/10.1038/srep45563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Maha A. Youssef (first author) was responsible for the measurement of the batch sorption study and the analysis of the data, writing, review, and editing. These measurements and their analyses were conducted in the Hot Laboratories and Waste Management Center- Egyptian Atomic Energy Authority. Abeer EL khalafawy (second author) contributed to the formal analysis, investigation, data curation, and review of the original draft. Hisham S. Hassan was responsible for conceptualization, supervision, visualization, and reviewing the original draft.

Corresponding author

Correspondence to Abeer El-khalafawy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The submitted manuscript is original and hasn’t been published elsewhere in any form or language.

Consent to publication

All authors agreed with the content and gave explicit consent to submit, and we obtained consent from the responsible authorities (the Egyptian atomic energy authority where the work has been carried out) before the work was submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssef, M.A., El-khalafawy, A. & Hassan, H.S. Insight into adsorption behavior of activated ZrO2 prepared by solution combustion for the removal of chromium and barium ions from aqueous solutions. J Radioanal Nucl Chem 333, 1883–1897 (2024). https://doi.org/10.1007/s10967-024-09388-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-024-09388-8

Keywords

Navigation