Skip to main content
Log in

Novel nano Rosmarinus officinalis phytomass adsorbent for strontium and europium removal from aqueous solution: batch and packet techniques

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Phytomass sorbent material (RM) was obtained as a by-product from the process of essential oil extraction. Its phosphoric acid-modified nano-form, N-RM, was used to absorb Sr(II) and Eu(III) from an aqueous solution. The pseudo-second-order is the better fitting model. Isotherm Langmuir and Freundlich models were fitted with a maximum capacity of qm 18.2, 60.4, 11.5, and 13.8 mg/g for Eu/RM, Eu/N-RM, Sr/RM, and Sr/N-RM, respectively. The packet technique promised to be applicable on a large scale for the treatment of contaminated water. Both RM and N-RM are effective eco-friendly adsorbents for the removal of Eu(III) and Sr(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

The data sets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Abdel Rahman RO, Zaki AA, El-Kamash AM (2007) Modeling the long-term leaching behavior of 137Cs, 60Co, and 152,154Eu radionuclides from cement–clay matrices. J Hazard Mater 145:372–380

    Article  CAS  PubMed  Google Scholar 

  2. Zaki AA, El-Zakla T, Abed El Geleel M (2021) Modeling kinetics and thermodynamics of Cs+ and Eu(III) removal from waste solutions using modified cellulose acetate membranes. J Membrane Sci 401–402:1–12

    Google Scholar 

  3. Sabriye YE, Sema E (2011) Adsorption characterization of strontium on PAN/zeolite composite adsorbent. J Nucl Sci Technol 1:6–12

    Google Scholar 

  4. Lehto J, Hou X (2011) Chemistry and Analysis of Radionuclides, Laboratory Techniques and Methodology, Wiley-VcH Verlag GmbH&Co.KGaA.

  5. Abdelhady A (2013) Radiological performance of hot water layer system in open pool type reactor. J Alex Eng 52:159–162

    Article  Google Scholar 

  6. Qu-Yang XK, Jin RN, Yang LP, Wen ZS, Yang LY, Wang YG, Wang CY (2014) Partially hydrolyzed bamboo (phyllostachys heterocycla) as a porous bioadsorbent for the removal of Pb (II) from aqueous mixtures. J Agric Food Chem 62:6007–6015

    Article  Google Scholar 

  7. Hu XJ, Wang JS, Liu YG, Li X, Zeng GM, Bao ZL, Zeng XX, Chen AW, Long F (2011) Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: Isotherms, kinetics and thermodynamics. J Hazard Meter 185:306–314

    Article  CAS  Google Scholar 

  8. Amthor JS (2010) From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy. New Phytol 188:939–959

    Article  CAS  PubMed  Google Scholar 

  9. Ozcan MM, Chalchat J-C (2008) Chemical composition and antifungal activity of rosemary (Rosmarinus officinalis L.) oil from Turkey. In J Food Sci Nutr 59:691–698

    CAS  Google Scholar 

  10. Genena AK, Hense H, Smania JA, de Souza SM (2008) Rosemary (Rosmarinus officinalis): a study of the composition, antioxidant and antimicrobial activities of extracts obtained with supercritical carbon dioxide. Food Sci Technol 28:463–469

    Article  CAS  Google Scholar 

  11. Erhayem M, Al-Tohami F, Mohamed R, Ahmida K (2015) Isotherm, kinetic and thermodynamic studies for the sorption of mercury (II) onto activated carbon from Rosmarinus officinalis leaves. Am J Anal Chem 6:1–1

    Article  CAS  Google Scholar 

  12. Amin MT, Alazba AA, Shafiq M (2017) Effective adsorption of methylene blue dye using activated carbon developed from the rosemary plant: isotherms and kinetic studies. Desalin and Wat Treat 74:336–345

    Article  CAS  Google Scholar 

  13. Banuprabha TR, Karthikeyani A, Kalyani P (2021) Evaluation and application of phytomass derived activated carbons as electrodes for coin cell supercapacitors. Int J Electrochem Sci 16:211251. https://doi.org/10.20964/2021.12.21

    Article  CAS  Google Scholar 

  14. Sun YP, Zhou B, Lin Y, Wang W, Fernando KS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757

    Article  CAS  PubMed  Google Scholar 

  15. Ingle PK, Karishma A, Rathod VK (2016) Copper removal using acid activated peanut husk from aqueous solution. J Environ Eng Landsc Manag 24(3):210–217. https://doi.org/10.3846/16486897.2016.1184151

    Article  Google Scholar 

  16. Kokol V, Bozic M, Vogrincic R, Mathew AP (2015) Characterization and properties of homo- and heterogenously phosphorylated nanocellulose. Carbohyd Polym 125:301–313

    Article  CAS  Google Scholar 

  17. Zhang Y, Zheng R, Zhao J, Ma F, Zhang Y, Meng Q (2014) Characterization of H3PO4-treated rice husk adsorbent and adsorption of Copper(II) from aqueous solution. Biomed Res Int. https://doi.org/10.1155/2014/496878

    Article  PubMed  PubMed Central  Google Scholar 

  18. Oliveira GF, de Andrade RC, Aparecido M, Trindade G, Andrade HMC, de Carvalho CT (2017) Thermogravimetric and spectroscopic study (TG–DTA/FT–IR) of activated carbon from the renewable biomass source babassu. Artigo Quim Nova 40(3):284–292

    Google Scholar 

  19. Gad HMH, Youssef MA (2018) Sorption behavior of Eu(III) from an aqueous solution onto modified hydroxyapatite: kinetics, modeling and thermodynamics. Environ Technol 39(20):2583–2596

    Article  CAS  PubMed  Google Scholar 

  20. Imam DM, Youssef MA, Attallah MF (2020) Promising framework of nanocomposite materials: synthesis and radio-lanthanides labeling for nuclear medicine application. J Radioanal Nucl Chem 323:749–761

    Article  CAS  Google Scholar 

  21. Yang P, Wei (2019) Novel nanomaterials for protein analysis, Chapter 2, Novel Nanomaterials for Biomedical, Enviro. and Energ. Applicat.

  22. Liebmann P, Loew G, Mclean AD, Pack GR (1982) Ab initio SCF studies of interactions of lithium(+), sodium(+), beryllium(2+), and magnesium(2+) ions with dihydrogen phosphate(-) ion: model for cation binding to nucleic acids. J Am Chem Soc 104(3):691–697

    Article  CAS  Google Scholar 

  23. Barrozo A, Blaha-Nelson D, Williams NH, Kamerlin SCL (2016) The effect of magnesium ions on triphosphate hydrolysis. J Pure Appl Chem 89(6):715–727. https://doi.org/10.1515/pac-2016-1125

    Article  CAS  Google Scholar 

  24. Alkan M, Demirbas O, Alikcapa S, Dogan M (2004) Sorption of red 57 from aqueous solution onto sepiolite. Hazard Mater B 116:135

    Article  CAS  Google Scholar 

  25. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451

    Article  CAS  Google Scholar 

  26. Weber WJ, Morris JM (1963) Kinetics of adsorption of carbon from solutions, J Sanit Eng. Div Am Soc Eng 89:31

    Google Scholar 

  27. Teng H, Hsieh C-T (1999) Activation energy for oxygen chemisorption on carbon at low temperatures. Ind Eng Chem Res 38:292–297

    Article  CAS  Google Scholar 

  28. Attallah MF, Hassan HS, Youssef MA (2019) Synthesis and sorption potential study of Al2O3-ZrO2-CeO2 composite material for removal of some radionuclides from radioactive waste effluent. Appl Radia Isotop 147:40–47

    Article  CAS  Google Scholar 

  29. Weidlich T, Lindsay SM, Rupprecht A (1988) Counterion effects on the structure and dynamics of solid DNA. Phys Rv Lett 61:1674. https://doi.org/10.1103/PhysRevLett.61.1674

    Article  CAS  Google Scholar 

  30. Freundlich H (1970) Uber die adsorption in losungen. Zeitschrift fur physikalische Chemie 57:385–470

    Google Scholar 

  31. Benes P, Majer V (1980) Trace chemistry of aqueous solutions. Elsevier, New York, NY

    Google Scholar 

  32. Bering B, Dubinin MSerpinsky V, (1972) On thermodynamics of adsorption in micropores. J of Colloi Interfa Sci 38:185–194

    Article  CAS  Google Scholar 

  33. Derakhshani E, Naghizadeh A, Khodadadi M (2016) Application of different isotherm models for humic acid adsorption on to bentonite and montmorillonite nanoparticles. Health Scope 6(2):e40416

    Article  Google Scholar 

  34. Goldberg S (2005) Equations and models describing adsorption processes in soils. Chemical processes in soils. Chapter 10, SSSA book series. Soil Science Society of America, Madison (WI)

  35. Batool F, Akbar J, Iqbal S, Noreen S, Nasir S, Bukhari A (2018) Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: an overview of linear and nonlinear approach and error analysis. J Bioinorgan Chem Appl. https://doi.org/10.1155/2018/3463724

    Article  Google Scholar 

  36. Rogowska J, Olkowska E, Ratajczyk W, Wolska L (2018) Gadolinium as a New Emerging Contaminant of Aquatic Environments. Environ Toxicolog and Chemis 37(6):1523–1534

    Article  CAS  Google Scholar 

  37. Barany S, Strelko V (2013) Laws and mechanism of adsorption of cations by different ion-exchange forms of silica gel. Adsorption 19(2–4):769–776

    Article  CAS  Google Scholar 

  38. Lalvani SB, Wiltowsk T, Hübner A, Weston A, Mandich N (1998) Removal of hexavalent chromium and metal cations by a selective and novel carbon adsorbent. Carbon 36(7–8):1219–1226

    Article  CAS  Google Scholar 

  39. Frederick CN (1949) Ion Exchange: theory and application. Academic Press Inc., New York, N. Y.

    Google Scholar 

  40. Arunraj B, Sathvika T, Rajesh V, Rajesh N (2019) Cellulose and Saccharomyces cerevisiae embark to recover europium from phosphor. Powder ACS Omega 4:40–952. https://doi.org/10.1021/acsomega.8b02845

    Article  CAS  Google Scholar 

  41. El-khalafawy A, Imam DM, Youssef MA (2022) Enhanced biosorption of europium and cesium ions from aqueous solution onto phalaris seed peel as environmental friendly biosorbent: Equilibrium and kinetic studies. Appl Radi Isotop 190:110498

    Article  CAS  Google Scholar 

  42. Elsanafeny HA, Abo Aly MM, Hasan MA, Lasheen YF, Youssef MA (2020) Synthesis and polymeric modification of hydroxyapatite from biogenic raw material for adsorptive removal of Co2+ and Sr2+. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-020-07411-2

    Article  Google Scholar 

  43. Hassan SSM, Kamel AH, Youssef MA, Aboterika AHA, Awwad NS (2020) Removal of barium and strontium from wastewater and radioactive wastes using a green bioadsorbent, Salvadora persica (Miswak). Desalinat and Wat Treatm 192:306–314

    Article  CAS  Google Scholar 

  44. Guo Y, Hong Nhung NT, Dai X, He C, Wang Y, Wei Y, Fujita T (2022) Strontium ion removal from artificial seawater using a combination of adsorption with biochar and precipitation by blowing CO2 nanobubble with neutralization. Front Bioeng Biotechnol 10:819407. https://doi.org/10.3389/fbioe.2022.819407

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hassan HS, Attallah MF, Yakout SM (2010) Sorption characteristics of an economical sorbent material used for removal radioisotopes of cesium and europium. J Radioanal Nucl Chem 286:17–26. https://doi.org/10.1007/s10967-010-0654-x

    Article  CAS  Google Scholar 

  46. Zaki A, El-Zakla T, El Geleel MA (2012) Modeling kinetics and thermodynamics of Cs+ and Eu3+ removal from waste solutions using modified cellulose acetate membranes. J Membr Sci 401:1–12. https://doi.org/10.1016/j.memsci.2011.12.044

    Article  CAS  Google Scholar 

  47. Shao DD, Fan QH, Li JX, Niu ZW, Wu WS, Chen YX, Wang XK (2009) Removal of Eu(III) from aqueous solution using ZSM-5 zeolite. Micropor Mesopor Mater 123:1–9. https://doi.org/10.1016/j.micromeso.2009.03.043

    Article  CAS  Google Scholar 

  48. Sofronov D, Rucki M, Varchenko V, Bryleva E, Mateychenko P, Lebedynskiy A (2022) Removal of europium, cobalt and strontium from water solutions using MnO(OH)-modified diatomite. J Environm Chem Engineer 10(1):10694

    Google Scholar 

  49. Moloukhia H , Hegazy WS , Abdel-Galila EA, Mahrous SS (2015) Removal of Eu3+, Ce3+, Sr2+ and Cs+ ions from radioactive waste solutions by modified activated carbon prepared from coconut shells, J Sci Res Sci,32: part:1.

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maha A. Youssef.

Ethics declarations

Ethical approval and Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssef, M.A., Attia, L.A. Novel nano Rosmarinus officinalis phytomass adsorbent for strontium and europium removal from aqueous solution: batch and packet techniques. J Radioanal Nucl Chem 332, 1935–1952 (2023). https://doi.org/10.1007/s10967-023-08862-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08862-z

Keywords

Navigation