Skip to main content
Log in

Matrix effects in plutonium isotope ratio measurements using thermal ionization mass spectrometry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Through high fidelity measurements of four different plutonium certified reference material standards from New Brunswick Laboratory, the mass fractionation correction factor for the 240Pu/239Pu major isotope ratio measurements by the total evaporation methodology using thermal ionization mass spectrometer instruments is shown to depend on the elapsed time since separation of the decay products from the analyzed plutonium fraction. Systematic biases arising from this matrix dependence of the mass fractionation correction factor are larger than the precision obtained in routine TE measurements of the 240Pu/239Pu major isotope ratio using thermal ionization mass spectrometry regarded as the gold standard for these measurements. LA-UR-21–21,941.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Platzner IT (1997) Modern isotope ratio mass spectrometry, vol 145. John Wiley, Chichester

    Google Scholar 

  2. Wieser ME, Schweiters JB (2005) The development of multiple collector mass spectrometry for isotope ratio measurements. Int J Mass Spectrom 242:97–115

    Article  CAS  Google Scholar 

  3. Richter S, Alonso A, Truyens J, Kühn H, Verbruggen A, Wellum R (2007) Evaluating the status of uranium isotope ratio measurements using an inter-laboratory comparison campaign. Int J Mass Spectrom 264:184–190

    Article  CAS  Google Scholar 

  4. Jakopič R, Richter S, Kühn H, Benedik L, Pihlar B, Aregbe Y (2009) Isotope ratio measurements of pg-size plutonium samples using TIMS in combination with “multiple ion counting” and filament carburization. Int J Mass Spectrom 279:87–92

    Article  Google Scholar 

  5. Oliveira Pereira Jr O, De Bolle W, Alonso A, Richter S, Wellum R, Ponzevera E, Sarkis ES, Kessel R (2010) Demonstrating the metrological compatibility of uranium isotope amount ratio measurement results obtained by GSMS, TIMS, and MC-ICPMS techniques. Int J Mass Spectrom 291:48–54

    Article  Google Scholar 

  6. Konegger-Kappel S, Prohaska T (2016) Spatially resolved analysis of plutonium isotopic signatures in environmental particle samples by laser ablation-MC-ICP-MS. Anal Bio-anal Chem 408:431–440

    Article  CAS  Google Scholar 

  7. Hoegg ED, Marcus RK, Hager GJ, Hart GL, Koppenaal DW (2018) Concomitant ion effects on isotope ratio measurements with liquid sampling – atmospheric pressure glow discharge ion source Orbitrap mass spectrometry. J Anal Atom Spectrom 33:251–259

    Article  CAS  Google Scholar 

  8. Boulyga SF, Heumann KG (2006) Determination of extremely low U-236/U-238 isotope ratios in environmental samples by sector-field inductively coupled plasma mass spectrometry using high-efficiency sample introduction. J Environ Radioact 88:1–10

    Article  CAS  PubMed  Google Scholar 

  9. Kraiem M, Richter S, Kühn H, Aregbe Y (2011) Development of an improved method to perform single particle analysis by TIMS for nuclear safeguards. Anal Chim Acta 688:1–7

    Article  CAS  PubMed  Google Scholar 

  10. Mannion JM, Shick CR, Fugate GA, Powell BA, Husson SM (2018) Anion-exchange polymer filament coating for ultra-trace isotopic analysis of plutonium by thermal ionization mass spectrometry. Talanta 189:502–508

    Article  CAS  PubMed  Google Scholar 

  11. Mialle S, Quémet A, Ponvienne A, Gourgiotis A, Aubert M, Isnard H, Chartier F (2012) The use of total evaporation method using Channeltron electron multipliers by thermal ionization mass spectrometry for europium isotope ratio measurements on pictogram sample amounts. Int J Mass Spectrom 309:141–147

    Article  CAS  Google Scholar 

  12. Maassen J, Inglis JD, Wende A, Kayzar-Boggs TM, Steiner RE, Kara A (2019) Analysis of sub-picogram quantities of 238Pu by thermal ionization mass spectrometry. J Radioanal Nucl Chem 321:1073–1080

    Article  CAS  Google Scholar 

  13. Kelley JM, Robertson DM (1985) Plutonium ion emission from carburized rhenium mass spectrometer filaments. Anal Chem 57:124–130

    Article  CAS  Google Scholar 

  14. Romkowski M, Franzini S, Koch L (1987) Mass-spectrometric analysis of sub-nanocurie samples of uranium and plutonium. In: Proceedings of the 8th annual ESARDA symposium, 12–14 May, 1987, London

  15. Total evaporation measurements of plutonium with a Thermal Quadrupole Mass Spectrometer (THQ) International Atomic Energy Agency, Seibersdorf (Austria). Laboratories March 1989 IAEA-AL-020; DE89634732

  16. Callis EL, Abernathy RM (1991) High-precision isotopic analyses of uranium and plutonium by total sample volatilization and signal integration. Int J Mass Spectrom 103:93–105

    Article  CAS  Google Scholar 

  17. Fielder R (1995) Total evaporation measurements: experience with multi-collector instruments and a thermal ionization quadrupole mass spectrometer. Int J Mass Spectrom 146(147):91–97

    Google Scholar 

  18. Mathew KJ, O’Connor G, Hasozbek A, Kraiem MJ (2013) Total evaporation method for uranium isotope-amount ratio measurements. J Anal At Spectrom 28:866–876

    Article  CAS  Google Scholar 

  19. Richter S, Goldberg SA (2003) Improved techniques for high accuracy isotope ratio measurements of nuclear materials using thermal ionization mass spectrometry. Int J Mass Spectrom 229:181–197

    Article  CAS  Google Scholar 

  20. Richter S, Kühn K, Aregbe Y, Hedberg M, Horta-Domenech J, Mayer K, Zuleger E, Bürger S, Boulyga S, Köpf A, Poths J, Mathew K (2011) Improvements in routine uranium isotope ratio measurements using the modified total evaporation method for multi-collector thermal ionization mass spectrometry. J Anal At Spectrom 26:550–564

    Article  CAS  Google Scholar 

  21. Bürger S, Essex RM, Mathew KJ, Richter S, Thomas RB (2010) Implementation of guide to the expression of uncertainty in measurement (GUM) to multi-collector TIMS uranium isotope ratio metrology. Int J Mass Spectrom 294:65–76

    Article  Google Scholar 

  22. Mathew KJ, Stanley FE, Thomas MR, Spencer KJ, Colletti LP, Tandon L (2016) Critical need for plutonium and uranium isotopic standards with lower uncertainties. Anal Methods 8:7289–7305

    Article  CAS  Google Scholar 

  23. Mialle S, Richter S, Hennessy C, Truyens J, Jacobsson U, Aregbe Y (2015) Certification of uranium hexafluoride reference materials for isotopic composition. J Radioanal Nucl Chem 305:255–266

    Article  CAS  Google Scholar 

  24. Boulyga S, Konegger-Kappel S, Richter S, Sangly L (2015) Mass spectrometric analysis for nuclear safeguards. J Anal At Spectrom 30:1469–1489

    Article  CAS  Google Scholar 

  25. Kappel S, Boulyga SF, Dorta L, Günther D, Hattendorf B, Koffler D, Laaha G, Leisch F, Prohaska T (2013) Evaluation strategies for isotope ratio measurements of single particles by LA-MC-ICPMS. Anal Bioanal Chem 405:2943–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bürger S, Balsley SD, Baumann S, Berger J, Boulyga SF, Cunningham JA, Kappel S, Koepf A, Poths J (2012) Uranium and plutonium analysis of nuclear material samples by multi-collector thermal ionisation mass spectrometry: quality control, measurement uncertainty, and metrological traceability. Int J Mass Spectrom 311:40–50

    Article  Google Scholar 

  27. Mathew K, Kayzar-Boggs T, Varga Z, Gaffney A, Denton J, Fulwyler J et al (2019) Inter-comparison of the radio-chronometric ages of plutonium-certified reference materials with distinct isotopic compositions. Anal Chem 91(18):11643–11652

    Article  CAS  PubMed  Google Scholar 

  28. Mathew Kattathu J (2019) Plutonium isotope ratio measurement techniques using TIMS. In: Clark DL, Geeson DA, Hanrahan RJ (eds) Plutonium handbook, vol 6, 2nd edn. American Nuclear Society, La Grange Park, IL, pp 3353–3419

    Google Scholar 

  29. Mason P, Narayanan U (2010) A documentary history of the United States’ first plutonium isotopic reference materials. New Brunswick Laboratory Report NBL-RM-2010-Pu-History

  30. Garner EL, Machlan LA, Shields WR (1971) Uranium isotopic standard reference materials. National Bureau of Standards, NBS special publication 260, 27

  31. Mathew KJ, Ottenfeld C, Keller R, Slemmons A (2018) Systematic bias in the 240Pu/239Pu isotopic ratio of plutonium isotopic standard CRM138. J Radioanal Nucl Chem 318:395–400

    Article  CAS  Google Scholar 

  32. International target values 2010 for measurement uncertainties in safeguarding nuclear materials. International Atomic Energy Agency, STR-368

  33. Nikolaou G, Biegalski SR (2019) Discrimination of weapons-grade plutonium from thermal reactors in nuclear forensics. J Radioanal Nucl Chem 322:513–518

    Article  CAS  Google Scholar 

  34. Keegan RP, Gehrke RJ (2003) A method to determine the time since last purification of weapons grade plutonium. J Appl Radiat Isot 59:137

    Article  CAS  Google Scholar 

  35. Spencer KJ, Tandon L, Gallimore D, Xu N, Kuhn KJ (2009) Refinement of Pu parent-daughter isotopic and concentration analysis for forensic (dating) purposes. J Radioanal Nucl Chem 282:549

    Article  CAS  Google Scholar 

  36. Kristo MJ, Gaffney AM, Marks N, Knight K, Cassatta WS, Hutcheon ID (2016) Nuclear forensic science: analysis of nuclear material out of regulatory control. Annu Rev Earth Planet Sci 44:555–579

    Article  CAS  Google Scholar 

  37. Mayer K, Wallenius M, Varga Z (2013) Nuclear forensic science: correlating measurable material parameters to the history of nuclear material. Chem Rev 113:884–900

    Article  CAS  PubMed  Google Scholar 

  38. Sturm M, Richter S, Aregbe Y, Wellum R, Mialle S, Mayer K, Prohaska T (2014) Evaluation of chronometers in plutonium age determination for nuclear forensics: what if the ‘Pu/U clocks’ do not match? J Rad Nucl Chem 302:399–411

    Article  CAS  Google Scholar 

  39. Richter S, Alonso A, De Bolle W, Wellum R, Taylor PDP (1999) Isotopic “fingerprints” for natural uranium ore samples. Int J Mass Spectrom 193:9–14

    Article  CAS  Google Scholar 

  40. Standard test method for determination of uranium or plutonium isotopic composition or concentration by the total evaporation method using a thermal ionization mass spectrometer, C1672-07

  41. Mathew K, Mason P, Voeks A, Narayanan U (2012) Uranium isotope abundance ratios in natural uranium metal certified reference material 112-A. Int J Mass Spectrom 315:8–14

    Article  CAS  Google Scholar 

  42. Mathew KJ, Essex RM, Hasozbek A, Orlowicz G, Soriano M (2014) Uranium isotope-amount ratios in certified reference material 116-A—Uranium (enriched) metal assay and isotopic standard. Int J Mass Spectrom 369:48–58

    Article  CAS  Google Scholar 

  43. Richter S, Alonso A, Aregbe Y, Eykens R, Kehoe F, Kühn H, Kivel N, Verbruggen A, Wellum R, Taylor PDP (2009) A new series of uranium isotope reference materials for investigating linearity of secondary electron multipliers in isotope mass spectrometry. Int J Mass Spectrom 281:115–125

    Article  CAS  Google Scholar 

  44. Abernathey RM, Matlack GM, Rein JE (1972) Sequential ion exchange separation and mass spectrometric determination of neodymium, uranium, and plutonium in mixed oxide fuels for burnup and isotopic distribution measurements. In: Proceedings symposium of analytical methods in the nuclear fuel cycle, Vienna

  45. Horwitz EP, Chiarizia R, Dietz ML, Diamond H, Nelson DM (1993) Separation and pre-concentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions. Anal Chim Acta 281:361–372

    Article  CAS  Google Scholar 

  46. Mathew KJ, Ottenfeld CF, Keller RC, Kuhn KJ, Fulwyler JB (2020) Preparation of 241Am/243Am gravimetric mixtures and development of Am isotopic and assay measurement techniques using thermal ionization mass spectrometry. Int J Mass Spectrom 458:116430

    Article  CAS  Google Scholar 

  47. Rodden (1966) Elemental uranium as a primary standard, Paper presented to the Advisory Committee for Standard Reference Materials and Methods of Measurement

  48. Donohue DL, Ziesler R (1993) Analytical chemistry in the aftermath of the Gulf War. Anal Chem 65:359A

    Article  CAS  Google Scholar 

  49. Suzuki D, Esaka F, Miyamoto Y, Magara M (2015) Direct isotope ratio analysis of individual uranium-plutonium mixed particles with various U/Pu ratios by thermal ionization mass spectrometry. Appl Radiat Isot 96:52–56

    Article  CAS  PubMed  Google Scholar 

  50. Varga Z, Nicholl A, Zsigrai J, Wallenius M, Mayer K (2018) Methodology for the preparation and validation of plutonium age dating materials. Anal Chem 90:4019–4024

    Article  CAS  PubMed  Google Scholar 

  51. Watanabe K, Sakai E, Minami K (1964) Radiochemical determination of plutonium isotopes and americium-241 in a plutonium sample. J Nucl Sci Tech 1(6):197–202

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Actinide Analytical Chemistry management support is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kattathu Joseph Mathew.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, K.J., Ottenfeld, C., Levesque, S. et al. Matrix effects in plutonium isotope ratio measurements using thermal ionization mass spectrometry. J Radioanal Nucl Chem 331, 1005–1017 (2022). https://doi.org/10.1007/s10967-021-08170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08170-4

Keywords

Navigation