Skip to main content
Log in

Comparison of characteristics of the cellulose nanocrystal aerogels aminosilane-functionalized through gas-phase reaction

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

The cellulose nanocrystal (CNC) aerogels through freeze-drying (FD) and supercritical CO2 drying (SC) were functionalized using aminosilane via vapor-phase reaction, and then they were characterized with a few different techniques. It was shown that the distinct microstructures in both pristine CNC aerogels generated no difference in their amine loading, being about 7.2 mmol g−1. The grafting reaction took place only on the CNC surfaces, and more amorphous phase from the aminosilane was formed in the CNC-FD aerogel than in the CNC-SC one during the modification. As a result, the modified CNC-FD (m-CNC-FD) aerogel exhibited a lower crystallinity and thermal stability than the modified CNC-SC (m-CNC-SC) one. The dual Langmuir isotherm model gave a good description of CO2 adsorption on both modified CNC aerogels. The m-CNC-FD aerogel gave a greater chemical affinity to CO2 than the m-CNC-SC one, but the latter exhibited a greater chemisorption capacity for CO2 than the former. The two modified aerogel exhibited a different adsorption–desorption profiles for CO2. However, the total CO2 uptakes for the m-CNC-FD and the m-CNC-SC aerogels were up to 2.5 mmol g−1 at 25 ℃ and 100 kPa, and the temperature for its complete removal was 108 ℃. Therefore, the similarity in the CO2 adsorption performance illustrated that both the CNC aerogels were all good porous materials of aminosilane for CO2 capture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Q. Yu, D.W.F. Brilman, Design strategy for CO2 adsorption from ambient air using a supported amine based sorbent in a fixed bed reactor. Energy Procedia 114, 6102–6114 (2017)

    Article  CAS  Google Scholar 

  2. A.B. Rao, E.S.A. Rubin, Technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ. Sci. Technol. 36, 4467–4475 (2002)

    Article  CAS  Google Scholar 

  3. D. Venturi, D. Grupkovic, L. Sisti, M.G. Baschetti, Effect of humidity and nanocellulose content on polyvinylamine-nanocellulose hybrid membranes for CO 2 capture. J. Membr.Sci. 548, 263–274 (2018)

    Article  CAS  Google Scholar 

  4. Abbo H, Piet M, Amino-functionalized silica materials for carbon dioxide capture, Proceedings of the ASME 2015 9th International Conference on Energy Sustainability, San Diego, California, (2015).

  5. S. Choi, J.H. Drese, C.W. Jones, Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. Chemsuschem 2, 796–854 (2009)

    Article  CAS  Google Scholar 

  6. A.S. González, M.G. Plaza, F. Rubiera, C. Pevida, Sustainable biomass-based carbon adsorbents for post-combustion CO2 capture. Chem Eng J 230, 456–465 (2013)

    Article  Google Scholar 

  7. D.L. Sivadas, K.P. Vijayalakshmi, R. Rajeev, K. Prabhakaran, K.N. Ninan, Supramolecular β-cyclodextrin–aniline system: a new class of amine on solid support for carbon dioxide capture with high amine efficiency. RSC Adv. 3, 24041–24045 (2013)

    Article  CAS  Google Scholar 

  8. F. Valdebenito, R. García, K. Cruces, G. Ciudad, G. Chinga-Carrasco, Y. Habibi, CO2 adsorption of surface-modified cellulose nanofibril films derived from agricultural wastes. ACS Sustain. Chem. Eng. 6, 12603–12612 (2018)

    Article  CAS  Google Scholar 

  9. N. Mahfoudhi, S. Boufi, Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24, 1171–1197 (2017)

    Article  CAS  Google Scholar 

  10. N. Lavoine, L. Bergström, Nanocellulose-based foams and aerogels: processing, properties, and applications. J. Mater. Chem. A 5, 16105–16117 (2017)

    Article  CAS  Google Scholar 

  11. H. Zhu, X. Yang, E.D. Cranston, S. Zhu, Flexible and porous nanocellulose aerogels with high loadings of metal-organic-framework particles for separations applications. Adv. Mater. 28, 7652–7657 (2016)

    Article  CAS  Google Scholar 

  12. Y. Kobayashi, T. Saito, A. Isogai, Aerogels with 3D ordered nanofiber skeletons of liquid-crystalline nanocellulose derivatives as tough and transparent insulators. Angew. Chem. 126, 10562–10565 (2014)

    Article  Google Scholar 

  13. M. Zanini, A. Lavoratti, M.V.G. Zimmermann, D. Galiotto, F. Matana, C. Baldasso, A.J. Zattera, Aerogel preparation from short cellulose nanofiber of the eucalyptus species. J. Cell Plast. 53, 503–512 (2016)

    Article  Google Scholar 

  14. M. Zanini, A. Lavoratti, L.K. Lazzari, D. Galiotto, M. Pagnocelli, C. Baldasso, A.J. Zattera, Producing aerogels from silanized cellulose nanofiber suspension. Cellulose 24, 769–779 (2016)

    Article  Google Scholar 

  15. Y. Li, H. Jiang, B. Han, Y. Zhang, Drying of cellulose nanocrystal gel beads using supercritical carbon dioxide. J. Chem. Technol. Biotechnol. 94, 1651–1659 (2019)

    Article  CAS  Google Scholar 

  16. H. Zhang, I. Hussain, M. Brust, M.F. Butler, S.P. Rannard, A.I. Cooper, Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat. Mater. 4, 787–793 (2005)

    Article  CAS  Google Scholar 

  17. G. Della Porta, P. Del Gaudio, F. De Cicco, R.P. Aquino, E. Reverchon, Supercritical drying of alginate beads for the development of aerogel biomaterials: optimization of process parameters and exchange solvents. Ind. Eng. Chem. Res. 52, 12003–12009 (2013)

    Article  CAS  Google Scholar 

  18. Y. Peng, D.J. Gardner, Y. Han, Z. Cai, M.A. Tshabalala, Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography. J. Colloid Interface Sci. 405, 85–95 (2013)

    Article  CAS  Google Scholar 

  19. D. Ciftci, A. Ubeyitogullari, R.R. Huerta, O.N. Ciftci, R.A. Flores, M.D.A. Saldaña, Lupin hull cellulose nanofiber aerogel preparation by supercritical CO 2 and freeze drying. J. Supercrit. Fluids 127, 137–145 (2017)

    Article  CAS  Google Scholar 

  20. V. Baudron, P. Gurikov, I. Smirnova, S. Whitehouse, Porous starch materials via supercritical- and freeze-drying. Gels (2019). https://doi.org/10.3390/gels5010012

    Article  PubMed  PubMed Central  Google Scholar 

  21. X.B. Yuan, N. Wolf, D. Mayer, A. Offenhausser, R. Wordenweber, Vapor-phase deposition and electronic characterization of 3-aminopropyltriethoxysilane self-assembled monolayers on silicon dioxide. Langmuir 35, 8183–8190 (2019)

    CAS  PubMed  Google Scholar 

  22. M. Fumagalli, F. Sanchez, S.M. Boisseau, L. Heux, Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents. Soft Matter 9, 11309–11317 (2013)

    Article  CAS  Google Scholar 

  23. M. Fumagalli, D. Ouhab, S.M. Boisseau, L. Heux, Versatile gas-phase reactions for surface to bulk esterification of cellulose microfibrils aerogels. Biomacromol 14, 3246–3255 (2013)

    Article  CAS  Google Scholar 

  24. M. Galinsky, U. Sénéchal, C. Breitkopf, The impact of microstructure geometry on the mass transport in artificial pores: a numerical approach. Modelling Simul. Eng. 2014, 1–7 (2014)

    Article  Google Scholar 

  25. H. Jiang, Y. Wu, B. Han, Y. Zhang, Effect of oxidation time on the properties of cellulose nanocrystals from hybrid poplar residues using the ammonium persulfate. Carbohydr. Polym. 174, 291–298 (2017)

    Article  CAS  Google Scholar 

  26. Z. Zhang, G. Sèbe, D. Rentsch, T. Zimmermann, P. Tingaut, Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem. Mater. 26, 2659–2668 (2014)

    Article  CAS  Google Scholar 

  27. M.-C. Popescu, C.-M. Popescu, G. Lisa, Y. Sakata, Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. J. Mol. Struct. 988, 65–72 (2011)

    Article  CAS  Google Scholar 

  28. E. Malm, V. Bulone, K. Wickholm, P.T. Larsson, T. Iversen, The surface structure of well-ordered native cellulose fibrils in contact with water. Carbohydr. Res. 345, 97–100 (2010)

    Article  CAS  Google Scholar 

  29. M.B. Foston, C.A. Hubbell, A.J. Ragauskas, Cellulose Isolation methodology for NMR analysis of cellulose ultrastructure. Materials 4, 1985–2002 (2011)

    Article  CAS  Google Scholar 

  30. S.C. Fernandes, P. Sadocco, A. Alonso-Varona, T. Palomares, A. Eceiza, A.J. Silvestre, I. Mondragon, C.S. Freire, Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. Acs Appl. Mater. Interfaces 5, 3290–3297 (2013)

    Article  CAS  Google Scholar 

  31. C.J. Garvey, I.H. Parker, G.P. Simon, On the interpretation of X-ray diffraction powder patterns in terms of the nanostructure of cellulose I fibres theoretical background about XRD of cellulose. Macromol. Chem. Phys. 206, 1568–1575 (2005)

    Article  CAS  Google Scholar 

  32. M. Wada, J. Sugiyama, T. Okano, Native celluloses on the basis of two crystalline phase ( Iα /Iβ) system. J. Appl. Polym. Sci. 49, 1491–1496 (1993)

    Article  CAS  Google Scholar 

  33. N.H. Mohd, N.F.H. Ismail, J.I. Zahari, W.F.B. Wan Fathilah, H. Kargarzadeh, S. Ramli, I. Ahmad, M.A. Yarmo, R. Othaman, Effect of aminosilane modification on nanocrystalline cellulose properties. J. Nanomater. 2016, 1–8 (2016)

    Article  Google Scholar 

  34. Y. Peng, D.J. Gardner, Y. Han, A. Kiziltas, Z. Cai, M.A. Tshabalala, Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20, 2379–2392 (2013)

    Article  CAS  Google Scholar 

  35. T. Zhai, Q. Zheng, Z. Cai, H. Xia, S. Gong, Synthesis of polyvinyl alcohol/cellulose nanofibril hybrid aerogel microspheres and their use as oil/solvent superabsorbents. Carbohydr. Polym. 148, 300–308 (2016)

    Article  CAS  Google Scholar 

  36. C. Buesch, S.W. Smith, P. Eschbach, J.F. Conley, J. Simonsen, The microstructure of cellulose nanocrystal aerogels as revealed by transmission electron microscope tomography. Biomacromolecules 17, 2956–2962 (2016)

    Article  CAS  Google Scholar 

  37. C. Gebald, J.A. Wurzbacher, P. Tingaut, T. Zimmermann, A. Steinfeld, Amine-based nanofibrillated cellulose as adsorbent for CO(2) capture from air. Environ. Sci. Technol. 45, 9101–9108 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude for the supports from the Special Fund for Forest Scientific Research in the Public Welfare (No. 201504603), China.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written, edited, and revised through contributions of all authors.

Corresponding author

Correspondence to Hua Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing interests or author’s contribution that could have appeared to influence the work reported in this paper. Funding is acknowledged. All data and materials are available.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 216 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, P., Xu, J., Wang, X. et al. Comparison of characteristics of the cellulose nanocrystal aerogels aminosilane-functionalized through gas-phase reaction. J Porous Mater 29, 745–758 (2022). https://doi.org/10.1007/s10934-022-01209-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-022-01209-1

Keywords

Navigation