Skip to main content

Advertisement

Log in

Orthotopic Implantation Achieves Better Engraftment and Faster Growth Than Subcutaneous Implantation in Breast Cancer Patient-Derived Xenografts

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Patient-Derived Xenograft (PDX) is now accepted as a murine model that better mimics human cancer when compared to a conventional cancer cell-line inoculation model. Some claim the advantage of orthotopic site implantation of patient tumor (OS) over ectopic implantation into the subcutaneous space (SQ); however, there has been no study that describes a head-to-head comparison of oncological differences between these two models to date. We hypothesize that OS tumors re-transplant and grow better than SQ tumors and are therefore a better model to evaluate tumor aggressiveness. Breast cancer PDXs were generated using the tumors derived from 11 patients into NOD scid gamma (NSG) mice. We used six ER(+)HER2(−) tumors and five triple negative (TN) tumors for a total of 11 tumors. Five PDX lines grew for an overall engraftment rate of 45%. We present our OS implantation method in detail. The re-transplantation rate of TN tumors in each transplant site was significantly higher in OS when compared to SQ tumors (70.1% vs. 32.1%, p < 0.01). OS tumors grow significantly faster than SQ tumors. Similarly, OS tumors demonstrated significantly more mitotic figures and Ki-67 positive cells than SQ tumors. The tumor re-transplantation rate significantly increased by the second and third generations with the OS method. The time from implantation to development of a palpable tumor dramatically decreased after the first passage. PDX of ER(+) tumors demonstrated significantly lower engraftment rates and slower tumor growth than TN tumors, which remarkably improved by the first passage. Orthotopically implanted PDX tumors showed better re-transplantation rates, greater tumor size, and more significant growth compared to the subcutaneously implanted model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BC:

Breast Cancer

PDX:

Patient-Derived Xenografts

MFP:

Mammary Fat Pads

OS:

Orthotopic Site

SQ:

Subcutaneous

TNBC:

Triple-negative breast cancer

ER(+):

Estrogen receptor positive

NSG:

NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ

HER2:

Human epidermal growth factor receptor 2

References

  1. SEER Stat Fact Sheets; Female Breast Cancer. https://seer.cancer.gov/statfacts/html/breast.html.

  2. Southam CM. Immunologic tolerance to human cancer transplants in rats. Cancer Res. 1966;26(12):2496–502.

    CAS  PubMed  Google Scholar 

  3. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer. 2001;84(10):1424–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rygaard J, Povlsen CO. Heterotransplantation of a human malignant tumour to "nude" mice. Acta pathologica et microbiologica Scandinavica. 1969;77(4):758–60.

    Article  CAS  PubMed  Google Scholar 

  5. Talmadge JE, Singh RK, Fidler IJ, Raz A. Murine models to evaluate novel and conventional therapeutic strategies for cancer. Am J Pathol. 2007;170(3):793–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dobrolecki LE, Airhart SD, Alferez DG, Aparicio S, Behbod F, Bentires-Alj M, et al. Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer Metastasis Rev. 2016;35(4):547–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deome KB, Faulkin LJ Jr, Bern HA, Blair PB. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 1959;19(5):515–20.

    CAS  PubMed  Google Scholar 

  8. Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 2013;73(15):4885–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dunphy KA, Tao L, Jerry DJ. Mammary epithelial transplant procedure. Journal of visualized experiments: JoVE 2010(40).

  10. Suarez CD, Littlepage LE. Patient-Derived Tumor Xenograft Models of Breast Cancer. Methods in molecular biology (Clifton, NJ). 2016;1406:211–23.

  11. Rashid OM, Nagahashi M, Ramachandran S, Dumur C, Schaum J, Yamada A, et al. An improved syngeneic orthotopic murine model of human breast cancer progression. Breast Cancer Res Treat. 2014;147(3):501–12.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ho KS, Poon PC, Owen SC, Shoichet MS. Blood vessel hyperpermeability and pathophysiology in human tumour xenograft models of breast cancer: a comparison of ectopic and orthotopic tumours. BMC Cancer. 2012;12:579.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang Y, Zhang GL, Sun X, Cao KX, Ma C, Nan N, et al. Establishment of a murine breast tumor model by subcutaneous or orthotopic implantation. Oncol Lett. 2018;15(5):6233–40.

    PubMed  PubMed Central  Google Scholar 

  14. Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer discovery. 2014;4(9):998–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, et al. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9(6):338–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eyre R, Alferez DG, Spence K, Kamal M, Shaw FL, Simoes BM, et al. Patient-derived Mammosphere and Xenograft tumour initiation correlates with progression to metastasis. J Mammary Gland Biol Neoplasia. 2016;21(3–4):99–109.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nemati F, Sastre-Garau X, Laurent C, Couturier J, Mariani P, Desjardins L, et al. Establishment and characterization of a panel of human uveal melanoma xenografts derived from primary and/or metastatic tumors. Clinical cancer research : an official journal of the American Association for Cancer Research. 2010;16(8):2352–62.

    Article  CAS  Google Scholar 

  18. Rashid OM, Nagahashi M, Ramachandran S, Dumur CI, Schaum JC, Yamada A, et al. Is tail vein injection a relevant breast cancer lung metastasis model? J Thorac Dis. 2013;5(4):385–92.

    PubMed  PubMed Central  Google Scholar 

  19. DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17(11):1514–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Euhus DM, Hudd C, LaRegina MC, Johnson FE. Tumor measurement in the nude mouse. J Surg Oncol. 1986;31(4):229–34.

    Article  CAS  PubMed  Google Scholar 

  21. Hait NC, Avni D, Yamada A, Nagahashi M, Aoyagi T, Aoki H, et al. The phosphorylated prodrug FTY720 is a histone deacetylase inhibitor that reactivates ERalpha expression and enhances hormonal therapy for breast cancer. Oncogenesis. 2015;4:e156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cottu P, Marangoni E, Assayag F, de Cremoux P, Vincent-Salomon A, Guyader C, et al. Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts. Breast Cancer Res Treat. 2012;133(2):595–606.

    Article  CAS  PubMed  Google Scholar 

  23. Katsuta E, Oshi M, Rashid OM, Takabe K. Generating a murine Orthotopic metastatic breast Cancer model and performing murine radical mastectomy. Journal of visualized experiments : JoVE. 2018(141).

  24. Katsuta E, Rashid OM, Takabe K. Murine breast cancer mastectomy model that predicts patient outcomes for drug development. J Surg Res. 2017;219:310–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rashid OM, Takabe K. Animal models for exploring the pharmacokinetics of breast cancer therapies. Expert Opin Drug Metab Toxicol. 2015;11(2):221–30.

    Article  CAS  PubMed  Google Scholar 

  26. Katsuta E, DeMasi SC, Terracina KP, Spiegel S, Phan GQ, Bear HD, et al. Modified breast cancer model for preclinical immunotherapy studies. J Surg Res. 2016;204(2):467–74.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rashid OM, Nagahashi M, Ramachandran S, Graham L, Yamada A, Spiegel S, et al. Resection of the primary tumor improves survival in metastatic breast cancer by reducing overall tumor burden. Surgery. 2013;153(6):771–8.

    Article  PubMed  Google Scholar 

  28. Nagahashi M, Ramachandran S, Kim EY, Allegood JC, Rashid OM, Yamada A, et al. Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis. Cancer Res. 2012;72(3):726–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kawaguchi T, Foster BA, Young J, Takabe K. Current update of patient-derived Xenograft model for translational breast Cancer research. J Mammary Gland Biol Neoplasia. 2017;22(2):131–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Terracina KP, Aoyagi T, Huang WC, Nagahashi M, Yamada A, Aoki K, et al. Development of a metastatic murine colon cancer model. J Surg Res. 2015;199(1):106–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nagahashi M, Yamada A, Miyazaki H, Allegood JC, Tsuchida J, Aoyagi T, et al. Interstitial fluid Sphingosine-1-phosphate in murine mammary gland and Cancer and human breast tissue and Cancer determined by novel methods. J Mammary Gland Biol Neoplasia. 2016;21(1–2):9–17.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nagahashi M, Yamada A, Aoyagi T, Allegood J, Wakai T, Spiegel S, et al. Sphingosine-1-phosphate in the lymphatic fluid determined by novel methods. Heliyon. 2016;2(12):e00219.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Aoki H, Aoki M, Katsuta E, Ramanathan R, Idowu MO, Spiegel S, et al. Host sphingosine kinase 1 worsens pancreatic cancer peritoneal carcinomatosis. J Surg Res. 2016;205(2):510–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Katsuta E, Yan L, Nagahashi M, Raza A, Sturgill JL, Lyon DE, et al. Doxorubicin effect is enhanced by sphingosine-1-phosphate signaling antagonist in breast cancer. J Surg Res. 2017;219:202–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nagahashi M, Yamada A, Katsuta E, Aoyagi T, Huang WC, Terracina KP, et al. Targeting the SphK1/S1P/S1PR1 Axis that links obesity, chronic inflammation, and breast Cancer metastasis. Cancer Res. 2018;78(7):1713–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nagahashi M, Takabe K, Liu R, Peng K, Wang X, Wang Y, et al. Conjugated bile acid-activated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression. Hepatology (Baltimore, Md). 2015;61(4):1216–26.

  37. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aoki H, Aoki M, Yang J, Katsuta E, Mukhopadhyay P, Ramanathan R, et al. Murine model of long-term obstructive jaundice. J Surg Res. 2016;206(1):118–25.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang Y, Aoki H, Yang J, Peng K, Liu R, Li X, et al. The role of sphingosine 1-phosphate receptor 2 in bile-acid-induced cholangiocyte proliferation and cholestasis-induced liver injury in mice. Hepatology (Baltimore, Md). 2017;65(6):2005–18.

  40. DeMasi SC, Katsuta E, Takabe K. Live animals for preclinical medical student surgical training. Edorium journal of surgery. 2016;3(2):24–31.

    PubMed  PubMed Central  Google Scholar 

  41. Cassidy JW, Caldas C, Bruna A. Maintaining tumor heterogeneity in patient-derived tumor Xenografts. Cancer Res. 2015;75(15):2963–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Braekeveldt N, Wigerup C, Tadeo I, Beckman S, Sanden C, Jonsson J, et al. Neuroblastoma patient-derived orthotopic xenografts reflect the microenvironmental hallmarks of aggressive patient tumours. Cancer Lett. 2016;375(2):384–9.

    Article  CAS  PubMed  Google Scholar 

  43. Richard E, Grellety T, Velasco V, MacGrogan G, Bonnefoi H, Iggo R. The mammary ducts create a favourable microenvironment for xenografting of luminal and molecular apocrine breast tumours. J Pathol. 2016;240(3):256–61.

    Article  CAS  PubMed  Google Scholar 

  44. Sflomos G, Dormoy V, Metsalu T, Jeitziner R, Battista L, Scabia V, et al. A preclinical model for ERalpha-positive breast Cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. Cancer Cell. 2016;29(3):407–22.

    Article  CAS  PubMed  Google Scholar 

  45. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 1990;82(1):4–6.

    Article  CAS  PubMed  Google Scholar 

  47. Katsuta E, Qi Q, Peng X, Hochwald SN, Yan L, Takabe K. Pancreatic adenocarcinomas with mature blood vessels have better overall survival. Sci Rep. 2019;9(1):1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Okano M, Oshi M, Butash AL, Katsuta E, Tachibana K, Saito K, et al. Triple-Negative Breast Cancer with High Levels of Annexin A1 Expression Is Associated with Mast Cell Infiltration, Inflammation, and Angiogenesis. International journal of molecular sciences. 2019;20(17).

  49. McAuliffe PF, Evans KW, Akcakanat A, Chen K, Zheng X, Zhao H, et al. Ability to generate patient-derived breast Cancer Xenografts is enhanced in Chemoresistant disease and predicts poor patient outcomes. PLoS One. 2015;10(9):e0136851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Moon HG, Oh K, Lee J, Lee M, Kim JY, Yoo TK, et al. Prognostic and functional importance of the engraftment-associated genes in the patient-derived xenograft models of triple-negative breast cancers. Breast Cancer Res Treat. 2015;154(1):13–22.

    Article  PubMed  Google Scholar 

  51. Whittle JR, Lewis MT, Lindeman GJ, Visvader JE. Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res. 2015;17:17.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bailey-Downs LC, Thorpe JE, Disch BC, Bastian A, Hauser PJ, Farasyn T, et al. Development and characterization of a preclinical model of breast cancer lung micrometastatic to macrometastatic progression. PLoS One. 2014;9(5):e98624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hanna C, Kwok L, Finlay-Schultz J, Sartorius CA, Cittelly DM. Labeling of breast Cancer patient-derived Xenografts with traceable reporters for tumor growth and metastasis studies. Journal of visualized experiments : JoVE. 2016(117).

  54. Turner TH, Alzubi MA, Sohal SS, Olex AL, Dozmorov MG, Harrell JC. Characterizing the efficacy of cancer therapeutics in patient-derived xenograft models of metastatic breast cancer. Breast Cancer Res Treat. 2018;170(2):221–34.

    Article  PubMed  Google Scholar 

  55. Echeverria GV, Powell E, Seth S, Ge Z, Carugo A, Bristow C, et al. High-resolution clonal mapping of multi-organ metastasis in triple negative breast cancer. Nat Commun. 2018;9(1):5079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Giuliano M, Herrera S, Christiny P, Shaw C, Creighton CJ, Mitchell T, et al. Circulating and disseminated tumor cells from breast cancer patient-derived xenograft-bearing mice as a novel model to study metastasis. Breast Cancer Res. 2015;17:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pearson T, Greiner DL, Shultz LD. Creation of "humanized" mice to study human immunity. Current protocols in immunology. 2008;Chapter 15:Unit 15.21.

  58. Rosato RR, Davila-Gonzalez D, Choi DS, Qian W, Chen W, Kozielski AJ, et al. Evaluation of anti-PD-1-based therapy against triple-negative breast cancer patient-derived xenograft tumors engrafted in humanized mouse models. Breast Cancer Res. 2018;20(1):108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grant R01CA160688 to K.T, and National Cancer Institute (NCI) grant P30CA016056 involving the use of Roswell Park Comprehensive Cancer Center’s Shared Resources.

Author information

Authors and Affiliations

Authors

Contributions

M.O. conceptualized study design, performed experiments and prepared the article.

M.O., I.O., K.S. and T.K. performed experiments.

A.B. prepared the article.

I.O. and M.N. prepared the figs.

K.K. and T.O. secured the funding.

K.T. provided supervision of experiments and prepared the article.

Corresponding author

Correspondence to Kazuaki Takabe.

Ethics declarations

Conflict of Interest

All the authors have no potential conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary figure 1.

Comparisons of representative histology of patients’ tumor and Xenografts. Hematoxilyn-Eosin (H&E) staining and Immunohistochemical staining of ANXA1, ER, PgR and HER2 in each tumors. (PNG 7092 kb)

High resolution image (TIF 1517 kb)

Supplementary figure 2.

Representative growth curves of other individual tumors. SQ (solid line), OS (broken line) tumors. (PNG 834 kb)

High resolution image (TIF 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okano, M., Oshi, M., Butash, A. et al. Orthotopic Implantation Achieves Better Engraftment and Faster Growth Than Subcutaneous Implantation in Breast Cancer Patient-Derived Xenografts. J Mammary Gland Biol Neoplasia 25, 27–36 (2020). https://doi.org/10.1007/s10911-020-09442-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-020-09442-7

Keywords

Navigation