Skip to main content

In Vivo Studies of Breast Cancer Cells

  • Chapter
  • First Online:
Techniques and Methodological Approaches in Breast Cancer Research

Abstract

The process of transplanting a living tissue, cells, or organs from one species to another is known as xenotransplantation and, the tissue, cells, or organs transplanted are known as xenografts. Xenotransplantation is possibly most well known for the transplant of organs originating from animals such as baboons and pigs into humans. The first and possibly most famous case of a xenotransplantation is that of Fae, an infant girl who successfully received a baboon heart in 1984. Despite the potential future use of this method to replace organs, cell xenotransplantation is a much more common procedure utilized in cancer research. This process most commonly involves implantation of human tumor cells into immunodeficient mice and is used to test the efficiency of compounds and their interactions with pathways within the body. Because human tumor cells can relatively easily be injected into mice and tumor growth can be routinely established, these models are commonly used for testing compounds. In a paper published by Baselga et al. xenografts were used to determine the effects of two anticancer drugs paclitaxel and doxorubicin in combination with an anti-HER2 antibody on breast cancer cell growth [1]. We have used xenografts to test the tumor formation of the SUM149 cell line in SCID mice. Mice were given subcutaneous injections of two million cells suspended in matrigel into the posterior quadrant of animals’ abdomens. Tumors are observed 3 weeks after the implantation (Fig. 8.1a), and the histology reveals a well-defined poorly differentiated tumor (Fig. 8.1b, c).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  1. Baselga J, Norton L, Albanell J, Mee Kim Y, Mendelsohn J (1998) Recombinant humanized anti-HER2 antibody (Herceptin™) enhances the antitumor activity of paclitaxel and doxorubicin against HER2/neu overexpressing human breast cancer xenografts. Cancer Res 58:2825m. http://cancerres.aacrjournals.org/content/58/13/2825#fn-3#fn-3

  2. Sanford KK (1974) Biologic manifestation of oncogenesis in vitro: a critique. J Natl Cancer Inst 53:1481–1485

    CAS  PubMed  Google Scholar 

  3. Giovanella BC, Stehlin JS, Williams LJ Jr (1972) Development of invasive tumors in the “nude” mouse after injection of cultured human melanoma cells. J Natl Cancer Inst 48: 1531–1533

    CAS  PubMed  Google Scholar 

  4. Giovanella BC, Stehlin JS (1973) Heterotransplantation of human malignant tumors in “nude” thymusless mice. I. Breeding and maintenance of “nude” mice. J Natl Cancer Inst 51: 615–619

    CAS  PubMed  Google Scholar 

  5. Giovanella BC, Stehlin JS, Williams LJ Jr (1974) Heterotransplantation of human malignant tumors in “nude” thymusless mice. II. Malignant tumors induced by injection of cell cultures derived from human solid tumors. J Natl Cancer Inst 52:921–930

    CAS  PubMed  Google Scholar 

  6. Povlsen CO, Fialkow PJ, Klein E (1973) Growth and antigenic properties of a biopsy-derived burkitt’s lymphoma in thymusless (nude) mice. Int J Cancer 11:30–39

    Article  CAS  PubMed  Google Scholar 

  7. Russo J, Soule HD, McGrath C, Rich MA (1976) Re-expression of the original tumor pattern by a human breast carcinoma cell line (MCF-7) in sponge cultures. J Natl Cancer Inst 56:279–282

    CAS  PubMed  Google Scholar 

  8. DeOme KB, Faulkin LJ Jr, Bern HA, Blair PB (1959) Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 19:350–359

    Google Scholar 

  9. Russo J, Russo IH (2004) Biological and molecular basis of breast cancer. Springer, Heidelberg, Germany

    Book  Google Scholar 

  10. Rygaard J, Povlsen CO (1969) Heterotransplantation of a human malignant tumor to “nude” mice. Acta Pathol Microbiol Scand 77:758–760

    Article  CAS  PubMed  Google Scholar 

  11. Greene HSN (1952) The significance of the heterologous transplantability of human cancer. Cancer 5:24–44

    Article  CAS  PubMed  Google Scholar 

  12. Russo J, McGrath CM (1975) Scirrhous carcinoma in the mouse: a model for human mammary carcinoma. Excerpta Medica, Amsterdam, p 488

    Google Scholar 

  13. Russo J, McGrath CM, Russo IH, Rich MA (1976) Tumoral growth of a human breast cancer cell line (MCF-7) in athymic mice. In: Nieburgs HE (ed) III international symposium on detection and prevention of cancer, New York, pp 617–626

    Google Scholar 

  14. Shafie SM, Giartham FH (1981) Role of hormones in the growth and regression of human breast cancer cells (MCF-7) transplanted into athymic mice. J Natl Cancer Inst 67:51–56

    CAS  PubMed  Google Scholar 

  15. Ura H, Bonfil RD, Reich R et al (1989) Expression of type IV collagenase and procollagen genes and its correlation with the tumorigenic, invasive and metastatic abilities of oncogene-transformed human bronchial epithelial cells. Cancer Res 49:4615–4621

    CAS  PubMed  Google Scholar 

  16. Smith HS, Wolman SR, Hackett AJ (1984) The biology of breast cancer at the cellular level. Biochim Biophys Acta 738:103–123

    CAS  PubMed  Google Scholar 

  17. Cooper CS, Blair DG, Oskarsson MK, Tainsky MA, Eader LA, Vande Woude GF (1984) Characterization of human transforming genes from chemically transformed teratocarcinoma, and pancreatic carcinoma cell lines. Cancer Res 44:1–10

    CAS  PubMed  Google Scholar 

  18. Strange R, Aguilar-Cordova E, Young UT, Billey HT, Dandekar S, Cardiff R (1989) Harvey-ras mediated neoplastic development in the mouse mammary gland. Oncogene 4:309–315

    CAS  PubMed  Google Scholar 

  19. Ozzello L (1971) Ultrastructure of the human mammary gland. In: Summers SC (ed) Pathology annual. Appleton-Century-Crofts, New York, pp 1–59

    Google Scholar 

  20. Soule HD, Maloney TM, Wolman SR, Peterson WD, Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF, Brooks SC (1990) Isolation and characterization of a spontaneously irmno human breast epithelial cell line, MCF-10. Cancer Res 50:6075–6086

    CAS  PubMed  Google Scholar 

  21. Stampfer MR, Bartley JC (1984) Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo[a]pyrene. Proc Natl Acad Sci U S A 82:2394–2398

    Article  Google Scholar 

  22. Zhang PL, Calaf G, Russo J (1992) Point mutation in codons 12 and 61 of the c-Ha-ras gene in carcinogen-treated human breast epithelial cells (HBEC). Proc Am Assoc Cancer Res 33:669a

    Google Scholar 

  23. Abarca-Quinones J, Calaf G, Estrada S, Barnabas-Sohi N, Zhang PL, Garcia M, Russo J (1992) Phenotypic progression of human breast epithelial cells HBEC transformed with chemical carcinogen. Proc Am Assoc Cancer Res 33:670a

    Google Scholar 

  24. Calaf G, Russo J (1992) Emergence of progressive neoplastic phenotypes of human breast epithetial (HBEC) treated with chemical carcinogens in vitro. Proc Am Assoc Cancer Res 33:1141a

    Google Scholar 

  25. Rochlitz CF, Scott GK, Dodson JM, Liu E, Dollbaum CH, Smith HS, Benz CH (1989) Incidence of activating ras oncogene mutations associated with primary and metastatic human breast cancer. Cancer Res 49:357–360

    CAS  PubMed  Google Scholar 

  26. Russo J, Fernandez SV, Russo PA et al (2006) 17-Beta-estradiol induces transformation and tumorigenesis in human breast epithelial cells. FASEB J 20:1622–1634

    Article  CAS  PubMed  Google Scholar 

  27. Huang Y, Fernandez S, Goodwin S, Russo PA, Russo IH, Sutter T, Russo J (2007) Epithelial to mesenchymal transition in human breast epithelial cells transformed by 17-beta-estradiol. Cancer Res 67:11147–11157

    Article  CAS  PubMed  Google Scholar 

  28. Zelmer A, Ward TH (2013) Noninvasive fluorescence imaging of small animals. J Microsc 252(1):8–15. doi:10.1111/jmi.12063

    Article  CAS  PubMed  Google Scholar 

  29. Liu C, Billadeau DD, Abdelhakim H, Leof E, Kaibuchi K, Bernabeu C, Bloom GS, Yang L, Boardman L, Shah VH, Kang N (2013) IQGAP1 suppresses TbetaRII-mediated myofibroblastic activation and metastatic growth in liver. J Clin Invest 123(3):1138–1156. doi:10.1172/JCI63836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Edinger M, Cao YA, Hornig YS, Jenkins DE, Verneris MR, Bachmann MH, Negrin RS, Contag CH (2002) Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur J Cancer 38(16):2128–2136

    Article  CAS  PubMed  Google Scholar 

  31. Vines DC, Green DE, Kudo G, Keller H (2011) Evaluation of mouse tail-vein injections both qualitatively and quantitatively on small-animal PET tail scans. J Nucl Med Technol 39(4):264–270. doi:10.2967/jnmt.111.090951

    Article  PubMed  Google Scholar 

  32. Ray DE, Holton JL, Nolan CC, Cavanagh JB, Harpur ES (1998) Neurotoxic potential of gadodiamide after injection into the lateral cerebral ventricle of rats. AJNR Am J Neuroradiol 19:1455–1462

    CAS  PubMed  Google Scholar 

  33. Passini MA, Watson DJ, Vite CH, Landsburg DJ, Feigenbaum AL, Wolfe JH (2003) Intraventricular brain injection of adeno-associated virus type 1 (AAV1) in neonatal mice results in complementary patterns of neuronal transduction to AAV2 and total long-term correction of storage lesions in the brains of β-glucuronidase-deficient mice. J Virol 77:7034–7040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Allen RM, Uban KA, Atwood EM, Albeck DS, Yamamoto DJ (2007) Continuous intracerebroventricular infusion of the competitive NMDA receptor antagonist, LY235959, facilitates escalation of cocaine self-administration and increases break point for cocaine in Sprague-Dawley rats. Pharmacol Biochem Behav 88(1):82–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Becker JC et al (1996) Eradication of human hepatic and pulmonary melanoma metastases in SCID mice by antibody-interleukin 2 fusion proteins. Proc Natl Acad Sci U S A 93(7):2702–2707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Bijian K et al (2012) Synthesis and biological activity of novel organoselenium derivatives targeting multiple kinases and capable of inhibiting cancer progression to metastases. Eur J Med Chem 48:143–152

    Article  CAS  PubMed  Google Scholar 

  37. Bugge TH et al (1997) Growth and dissemination of Lewis lung carcinoma in plasminogen-deficient mice. Blood 90(11):4522–4531

    CAS  PubMed  Google Scholar 

  38. Gillies SD et al (1998) Antibody-IL-12 fusion proteins are effective in SCID mouse models of prostate and colon carcinoma metastases. J Immunol 160(12):6195–6203

    CAS  PubMed  Google Scholar 

  39. Louie E et al (2010) Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res 12(6):R94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Russo M.D. .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Russo, J., de Cicco, R.L., Pogash, T.J., Russo, I.H. (2014). In Vivo Studies of Breast Cancer Cells. In: Techniques and Methodological Approaches in Breast Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0718-2_8

Download citation

Publish with us

Policies and ethics