Skip to main content
Log in

A Quninolylthiazole Derivatives as an ICT-Based Fluorescent Probe of Hg(II) and its Application in Ratiometric Imaging in Live HeLa Cells

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

As a structural analogue of pyridylthiazole, 2-(2-benzothiazoyl)-phenylethynylquinoline (QBT) was designed as a fluorescent probe for Hg(II) based on an intramolecular charge transfer (ICT) mechanism. The compound was synthesized in three steps starting from 6-bromo-2-methylquinoline, with moderate yield. Corresponding studies on the optical properties of QBT indicate that changes in the fluorescence ratio of QBT in response to Hg(II) could be quantified based on dual-emission changes. More specifically, the emission spectrum of QBT before and after interactions with Hg(II) exhibited a remarkable red shift of about 120 nm, which is rarely reported in ICT-based fluorescent sensors. Finally, QBT was applied in the two-channel imaging of Hg(II) in live HeLa cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Von Burg R (1995) Toxicology update. J Appl Toxicol 15:483–493

    Article  Google Scholar 

  2. Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351

    Article  PubMed  CAS  Google Scholar 

  3. Han S, Narasingarao P, Obraztsove A, Gieskes J, Hartmann AC, Tebo BM, Allen EE, Deheyn DD (2010) Mercury speciation in marine sediments under sulfate-limited conditions. Environ Sci Technol 44:3752–3757

    Article  PubMed  CAS  Google Scholar 

  4. Tchounwou PB, Ayensu WK, Ninashvili N, Sutton D (2003) Environmental exposure to mercury and its toxicopathologic implications for public health. Environ Toxicol 18:149–175

    Article  PubMed  CAS  Google Scholar 

  5. Magos L, Clarkson TW (2006) Overview of the clinical toxicity of mercury. Ann Clin Biochem 43:257–268

    Article  PubMed  CAS  Google Scholar 

  6. Nolan EM, Lippard SJ (2008) Tools and tactics for the optical detection of mercuric ion. Chem Rev 138:3443–3480

    Article  CAS  Google Scholar 

  7. Saleem M, Rafiq M, Hanif M (2017) Organic material based fluorescent sensor for Hg2+: a brief review on recent development. J Fluoresc 27:31–58

    Article  PubMed  CAS  Google Scholar 

  8. Fan J, Hu M, Zhan P, Peng X (2013) Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing. Chem Soc Rev 42:29–43

    Article  PubMed  CAS  Google Scholar 

  9. Yuan L, Lin WY, Zheng KB, Zhu SS (2013) FRET-based small-molecule fluorescent probes: rational design and bioimaging applications. Acc Chem Res 46:1462–1473

    Article  PubMed  CAS  Google Scholar 

  10. Ge Y, Liu A, Shen S, Cao X (2017) Detection of Hg2+ by a FRET ratiometric fluorescent probe based on a novel pyrido[1,2-a]benzimidazole-rhodamine system. Sensors Actuators B 251:410–415

    Article  CAS  Google Scholar 

  11. Chen Y, Wan L, Yu X, Li W, Bian Y, Jiang J (2011) Rational design and synthesis for versatile FRET ratiometric sensor for Hg2+ and Fe2+: a flexible 8-hydroxyquinoline benzoate linked bodipy-porphyrin dyad. Org Lett 13:5774–5777

    Article  PubMed  CAS  Google Scholar 

  12. Kaur A, Sharma H, Kaur S, Singh N, Kaur N (2013) A counterion displacement assay with a Biginelli product: a ratiometric sensor for Hg2+ and the resultant complex as a sensor for Cl. RSC Adv 3:6160–6166

    Article  CAS  Google Scholar 

  13. Jiang XJ, Ng DKP (2014) Sequential logic operations with a molecular keypad lock with four inputs ad dual fluorescence outputs. Angew Chem Int Ed 53:10481–10484

    Article  CAS  Google Scholar 

  14. Thirupathi R, Saritha P, Lee KH (2014) Ratiometric fluorescence chemosensor based on tyrosine derivatives for monitoring mercury ions in aqueous solutions. Org Biomol Chem 12:7100–7109

    Article  PubMed  CAS  Google Scholar 

  15. Xie P, Guo F, Wang L, Yang S, Yao D, Yang G (2015) A dansyl-rhodamine ratiometric fluorescent probe for Hg2+ based on FRET mechanism. J Fluoresc 25:319–325

    Article  PubMed  CAS  Google Scholar 

  16. Liu H, Ding H, Zhu L, Wang Y, Chen Z, Tian Z (2015) A indole-trizole-rhodamine triad as ratiometric fluorescent probe for nanomolar-concentration level Hg2+ sensing with high selectivity. J Fluoresc 25:1259–1266

    Article  PubMed  CAS  Google Scholar 

  17. Bhatta SR, Mondal B, Vijaykumar G, Thakur A (2017) ICT-isomerization-induced turn-on fluorescence probe with a large emission shift for mercury ion: application in combinational molecular logic. Inorg Chem 56:11577–11590

    Article  PubMed  CAS  Google Scholar 

  18. Zheng MH, Jin JY, Sun W, Yan CH (2014) Molecular keypad locks based on gated photochromism and enhanced fluorescence by protonation effects. J Fluoresc 24:1169–1176

    Article  PubMed  CAS  Google Scholar 

  19. Li LL, Sun H, Fang CJ, Xu J, Jin JY, Yan CH (2007) Optical sensors based on functionalized mesoporous silica SBA-15 for the detection of multianalytes (H+ and Cu2+) in water. J Mater Chem 17:4492–4498

    Article  CAS  Google Scholar 

  20. Zheng MH, Zhang MM, Li HH, Jin JY (2012) Digital pH fluorescent sensing shown by small organic molecules. J Fluoresc 22:1421–1424

    Article  PubMed  CAS  Google Scholar 

  21. Zheng MH, Hu X, Yang MY, Jin JY (2015) Ratiometrically fluorescent sensing of Zn(II) on dual-emission of 2-pyridylthiazole derivatives. J Fluoresc 25:1831–1834

    Article  PubMed  CAS  Google Scholar 

  22. Zheng MH, Hu X, Wang WX, Liu XL, Jin JY (2016) Fluorescence-enhanced sensing of hypochlorous acid based on 2-pyridylthiazole unit. J Fluoresc 26:593–598

    Article  PubMed  CAS  Google Scholar 

  23. Yang MY, Zhao XL, Zheng MH, Jin JY (2016) Fluorescent sensing of both Fe(III) and pH based on 4-phenyl-2-(2-pyridyl)thiazole and construction of OR logic function. J Fluoresc 26:1653–1657

    Article  PubMed  CAS  Google Scholar 

  24. Wang Y, Yang MY, Zheng MH, Zhao XL, Xie YZ, Jin JY (2016) 2-Pyrdiylthiazole derivative as ICT-based ratiometric fluorescent sensor for Fe(III). Tetrahedron Lett 57:2399–3402

    Article  CAS  Google Scholar 

  25. Meng X, Wang S, Li Y, Zhu M, Guo Q (2012) 6-Substituted quinoline-based ratiometric two-photon fluorescent probes for biological Zn2+ detection. Chem Commun 48:4196–4198

    Article  CAS  Google Scholar 

  26. Mao Z, Hu L, Dong X, Zhong C, Liu BF, Liu Z (2014) Highly sensitive quinoline-based two-photon fluorescent probe for monitoring intracellular free zinc ions. Anal Chem 86:6548–6554

    Article  PubMed  CAS  Google Scholar 

  27. Momidi BK, Tekure V, Trivedi DR (2016) Selective detiction of mercury ions using benzothiazole based colorimetric chemosensor. Inorg Chem Commun 74:1–5

    Article  CAS  Google Scholar 

  28. Sonogashira K, Tohda Y, Hagihara N (1975) A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett 16:4467–4470

    Article  Google Scholar 

  29. Ames DE, Bull D, Takundwa C (1981) A convenient synthesis of ethynyl N-heteroarenes. Synthesis 1981:364–365

    Article  Google Scholar 

  30. Yu L, Lindesey JS (2001) Rational synthesis of cyclic hexameric porphyrin arrays for studies of self-assembling light-harvesting systems. J Org Chem 66:7402–7419

    Article  PubMed  CAS  Google Scholar 

  31. Frisc, MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian, Inc., Pittsburgh

  32. Hay PJ, Wadt WR (1985) Ab intio effective core potentials for molecular calculations: potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  33. Hay PJ, Wadt WR (1985) Ab intio effective core potentials for molecular calculations: potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  34. Wadt WR, Hay PJ (1985) Ab intio effective core potentials for molecular calculations: potentials for main group elements Na to Bi. J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  35. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  36. Brune D, Nordberg GF, Vesterberg O, Gerhardsson L, Wester PO (1991) A review of normal concentrations of mercury in human blood. Sci Total Environ 100:235–282

    Article  PubMed  Google Scholar 

  37. Queipo Abad S, Rodriguez-Gonzalez P, Davis WC, Garcia-Alonso JI (2017) Development of a common procedure for the determination of methylmercury, ethylmercury and inorganic mercury in human whole blood, hair and urine by triple spike species-specific isotope dilution mass spectrometry. Anal Chem 89:6731–6739

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the financial support from the National Natural Science Foundation of China (NSFC 21062023 and 21768004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Yi Jin.

Electronic Supplementary Material

ESM 1

(DOCX 290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, JY., Xie, YZ., Wang, CJ. et al. A Quninolylthiazole Derivatives as an ICT-Based Fluorescent Probe of Hg(II) and its Application in Ratiometric Imaging in Live HeLa Cells. J Fluoresc 28, 795–800 (2018). https://doi.org/10.1007/s10895-018-2241-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2241-4

Keywords

Navigation