Skip to main content
Log in

A Dansyl-Rhodamine Ratiometric Fluorescent Probe for Hg2+ Based on FRET Mechanism

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Based on resonance energy transfer (FRET) from dansyl to rhodamine 101, a new fluorescent probe (compound 1) containing rhodamine 101 and a dansyl unit was synthesized for detecting Hg2+ through ratiometric sensing in DMSO aqueous solutions. This probe shows a fast, reversible and selective response toward Hg2+ in a wide pH range. Hg2+ induced ring-opening reactions of the spirolactam rhodamine moiety of 1, leading to the formation of fluorescent derivatives that can serve as the FRET acceptors. Very large stokes shift (220 nm) was observed in this case. About 97-fold increase in fluorescence intensity ratio was observed upon its binding with Hg2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8

Similar content being viewed by others

References

  1. Zhao Q, Li F, Huang C (2010) Phosphorescent chemosensors based on heavy-metal complexes. Chem Soc Rev 39:3007–3030

    Article  CAS  PubMed  Google Scholar 

  2. Tsukanov AV, Dubonosov AD, Bren VA, Minkin VI (2008) Organic chemosensors with crown-ether groups (review). Chem Heterocycl Compd 44:899–923

    Article  CAS  Google Scholar 

  3. Prodi L, Balletta F, Mantalti M, Zaccheroni N (2000) Luminescent chemosensors for transition metal ions. Coord Chem Rev 205:59–83

    Article  CAS  Google Scholar 

  4. Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2012) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev 112:1910–1956

    Article  CAS  PubMed  Google Scholar 

  5. Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351

    Article  CAS  PubMed  Google Scholar 

  6. Renzoni A, Zino F, Franchi E (1998) Mercury levels along the food chain and risk for exposed populations. Environ Res 77:68–72

    Article  CAS  PubMed  Google Scholar 

  7. Zhang D, Su JH, Ma X, Tian H (2008) An efficient multiple-mode molecular logic system for pH, solvent polarity, and Hg2+ ions. Tetrahedron 64:8515–8521

    Article  CAS  Google Scholar 

  8. Zalups RK, Lash LH (2006) Cystine alters the renal and hepatic disposition of inorganic mercury and plasma thiol status. Toxicol Appl Pharmacol 214:88–97

    Article  CAS  PubMed  Google Scholar 

  9. Zalups RK, Ahmad S (2004) Homocysteine and the renal epithelial transport and toxicity of inorganic mercury: role of basolateral transporter organic anion transporter 1. J Am Soc Nephrol 15:2023–2031

    Article  CAS  PubMed  Google Scholar 

  10. Silbergeld EK, Silva IA, Nyland JF (2005) Mercury and autoimmunity: implications for occupational and environmental health. Toxicol Appl Pharmacol 207:s282–s292

    Article  CAS  Google Scholar 

  11. de Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  12. Chen X, Tian X, Shin I, Yoon J (2011) Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 40:4783–4804

    Article  CAS  PubMed  Google Scholar 

  13. Czarnik AW (1993) Fluorescent chemosensors for ion and molecule recognition. American Chemical Society, Washington

    Book  Google Scholar 

  14. Banerjee T, Suresh M, Ghosh HN, Das A (2011) Eur J Inorg Chem 30:4680–4690

    Article  Google Scholar 

  15. Rurack K (2001) Flipping the light switch ‘ON’ - the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochim Acta A 57:2161–2195

    Article  CAS  Google Scholar 

  16. Suresh M, Shrivastav A, Mishra S, Suresh E, Das A (2008) A rhodamine-based chemosensor that works in the biological system. Org Lett 10:3013–3016

    Article  CAS  PubMed  Google Scholar 

  17. Kim HN, Nam S-W, Swamy KMK, Jin Y, Chen X, Kim Y, Kim S-J, Park S, Yoon J (2011) Rhodamine hydrazone derivatives as Hg2+ selective fluorescent and colorimetric chemosensors and their applications to bioimaging and microfluidic system. Analyst 136:1339–1343

    Article  CAS  PubMed  Google Scholar 

  18. Huang W, Zhou P, Yan W, He C, Xiong L, Li F, Duan C (2009) A bright water-compatible sugar-rhodamine fluorescence sensor for selective detection of Hg2+ in natural water and living cells. J Environ Monit 11:330–335

    Article  CAS  PubMed  Google Scholar 

  19. Tang L, Li F, Liu M, Nandhakumar R (2011) Single sensor for two metal ions: colorimetric recognition of Cu2+ and fluorescent recognition of Hg2+. Spectrochim Acta A 78:1168–1172

    Article  Google Scholar 

  20. Wu D, Huang W, Duan C, Lin Z, Meng Q (2007) Highly sensitive fluorescent probe for selective detection of Hg2+ in DMF aqueous media. Inorg Chem 46:1538–1540

    Article  CAS  PubMed  Google Scholar 

  21. Wu D, Huang W, Lin Z, Duan C, He C, Wu S, Wang D (2008) Highly sensitive multiresponsive chemosensor for selective detection of Hg2+ in natural water and different monitoring environments. Inorg Chem 47:7190–7201

    Article  CAS  PubMed  Google Scholar 

  22. Huang W, Wu D-Y, Duan C-Y (2010) Conformation-switched chemosensor for selective detection of Hg2+ in aqueous media. Inorg Chem Commun 13:294–297

    Article  CAS  Google Scholar 

  23. Yang H, Zhou Z, Huang K, Yu M, Li F, Yi T, Huang C (2007) Multisignaling optical-electrochemical sensor for Hg2+ based on a rhodamine derivative with a ferrocene unit. Org Lett 9:4729–4732

    Article  CAS  PubMed  Google Scholar 

  24. Du J, Fan J, Peng X, Sun P, Wang J, Li H, Sun S (2010) A new fluorescent Chemodosimeter for Hg2+: selectivity, sensitivity, and resistance to Cys and GSH. Org Lett 12:476–479

    Article  CAS  PubMed  Google Scholar 

  25. Shiraishi Y, Sumiya S, Kohno Y, Hirai T (2008) A rhodamine-cyclen conjugate as a highly sensitive and selective fluorescent chemosensor for Hg(II). J Org Chem 73:8571–8574

    Article  CAS  PubMed  Google Scholar 

  26. Kwon SK, Kim HN, Rho JH, Swamy KMK, Shanthakumar SM, Yoon J (2009) Rhodamine derivative bearing histidine binding site as a fluorescent chemosensor for Hg2+. Bull Korean Chem Soc 30:719–721

    Article  CAS  Google Scholar 

  27. Tsien RY, Poenie M (1986) Fluorescence ratio imaging: a new window into intracellular ionic signaling. Trends Biochem Sci 11:450–455

    Article  CAS  Google Scholar 

  28. Guliyev R, Coskun A, Akkaya EU (2009) Design strategies for ratiometric chemosensors: modulation of excitation energy transfer at the energy donor site. J Am Chem Soc 131:9007–9013

    Article  CAS  PubMed  Google Scholar 

  29. Zhou Z, Yu M, Yang H, Huang K, Li F, Yi T, Huang C (2008) FRET-based sensor for imaging chromium(III) in living cells. Chem Commun 3387–3389

  30. Shang G-Q, Gao X, Chen M-X, Zheng H, Xu J-G (2008) A novel Hg2+ selective ratiometric fluorescent chemodosimeter based on an intramolecular FRET mechanism. J Fluoresc 18(6):1187–1192

    Article  CAS  PubMed  Google Scholar 

  31. Lee MH, Kim HJ, Yoon S, Park N, Kim JS (2008) Metal ion induced FRET OFF-ON in Tren/Dansyl-appended rhodamine. Org Lett 10:213–216

    Article  CAS  PubMed  Google Scholar 

  32. Tolosa L, Nowaczyk K, Lakowicz J (2002) In an introduction to laser spectroscopy. In: Fluorescence for biochemical systems, 2nd ed. Kluwer Academic/Plenum Publishers, New York

  33. Zhang X, Xiao Y, Qian X (2008) A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angew Chem Int Ed 47(42):8025–8029

    Article  CAS  Google Scholar 

  34. Othman AB, Lee JW, Wu JS, Kim JS, Abidi R, Thuery P, Strub JM, Dorsselaer AV, Vicens J (2007) Calix[4]arene-based, Hg2+ -induced intramolecular fluorescence resonance energy transfer chemosensor. J Org Chem 72:7634–7640

    Article  PubMed  Google Scholar 

  35. Yuan MJ, Zhou WD, Liu XF, Zhu M, Li JB, Yin XD, Zheng HY, Zuo ZC, Ouyang CB, Liu HB, Li YL, Zhu DB (2008) A multianalyte chemosensor on a single molecule: promising structure for an integrated logic gate. J Org Chem 73:5008–5014

    Article  CAS  PubMed  Google Scholar 

  36. Lee YH, Lee MH, Zhang JF, Kim JS (2010) Pyrene excimer-based Calix[4]arene FRET chemosensor for mercury(II). J Org Chem 75:7159–7165

    Article  CAS  PubMed  Google Scholar 

  37. Yu HB, Xiao Y, Guo HY, Qian XH (2011) Convenient and efficient FRET platform featuring a rigid biphenyl spacer between rhodamine and BODIPY: transformation of Turn-On’ sensors into ratiometric ones with dual emission. Chem Eur J 17:3179–3191

    Article  CAS  PubMed  Google Scholar 

  38. Fang G, Xu MY, Zeng F, Wu SZ (2010) β-Cyclodextrin as the vehicle for forming ratiometric mercury ion sensor usable in aq. media, biol. fluids, and live cells. Langmuir 26:17764–17771

    Article  CAS  PubMed  Google Scholar 

  39. Zhou Z, Li Y, Wu Y (2014) Ratiometric fluorescence probe for two-photon bioimaging of Cr3+ in living cells. Tetrahedron Lett 55(30):4075–4077

    Article  CAS  Google Scholar 

  40. Xie P, Guo F, Xia R, Wang Y, Yao D, Yang G, Xie L (2014) A rhodamine–dansyl conjugate as a FRET based sensor for Fe3+ in the red spectral region. J Lumin 145:849–854

    Article  CAS  Google Scholar 

  41. Uddin Md J, Marnett LJ (2008) Synthesis of 5- and 6-carboxy-X-rhodamines. Org Lett 10:4799–4801

    Article  PubMed Central  PubMed  Google Scholar 

  42. Zhang X, Shiraishi Y, Hirai T (2007) Cu(II)-selective green fluorescence of a rhodamine−diacetic acid conjugate. Org Lett 9:5039–5042

    Article  CAS  PubMed  Google Scholar 

  43. Zhao Y, Zhang X-B, Han Z-X, Qiao L, Li C-Y, Jian L-X, Shen G-L, Yu R-Q (2009) A highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ in aqueous solution and living cells. Anal Chem 81:7022–7030

    Article  CAS  PubMed  Google Scholar 

  44. Liu B, Zeng F, Wu G, Wu S (2011) A FRET-based ratiometric sensor for mercury ions in water with multi-layered silica nanoparticles as the scaffold. Chem Commun 47:8913–8915

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the NSFC (project No. 21102037) and the Education Department of Henan Province (No. 2010GGJS-048) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Puhui Xie or Fengqi Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1061 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, P., Guo, F., Wang, L. et al. A Dansyl-Rhodamine Ratiometric Fluorescent Probe for Hg2+ Based on FRET Mechanism. J Fluoresc 25, 319–325 (2015). https://doi.org/10.1007/s10895-015-1511-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1511-7

Keywords

Navigation