Skip to main content
Log in

Nucleic acid helix structure determination from NMR proton chemical shifts

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We present a method for de novo derivation of the three-dimensional helix structure of nucleic acids using non-exchangeable proton chemical shifts as sole source of experimental restraints. The method is called chemical shift de novo structure derivation protocol employing singular value decomposition (CHEOPS) and uses iterative singular value decomposition to optimize the structure in helix parameter space. The correct performance of CHEOPS and its range of application are established via an extensive set of structure derivations using either simulated or experimental chemical shifts as input. The simulated input data are used to assess in a defined manner the effect of errors or limitations in the input data on the derived structures. We find that the RNA helix parameters can be determined with high accuracy. We finally demonstrate via three deposited RNA structures that experimental proton chemical shifts suffice to derive RNA helix structures with high precision and accuracy. CHEOPS provides, subject to further development, new directions for high-resolution NMR structure determination of nucleic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allain FHT, Varani G (1997) How accurately and precisely can RNA structure be determined by NMR? J Mol Biol 267:338–351

    Article  Google Scholar 

  • Altona C, Faber DH, Hoekzema AJAW (2000) Double-helical DNA 1H chemical shifts: an accurate and balanced predictive empirical scheme. Magn Reson Chem 38:95–107

    Article  Google Scholar 

  • Arnott S, Hukins DWL (1973) Refinement of the structure of B-DNA and implications for the analysis of X-ray diffraction data from fibers of biopolymers. J Mol Biol 81:93–105

    Article  Google Scholar 

  • Bailor MH, Musselman C, Hansen AL, Gulati K, Patel DJ, Al-Hashimi HM (2007) Characterizing the relative orientation and dynamics of RNA A-form helices using NMR residual dipolar couplings. Nat Protoc 2:1536–1546

    Article  Google Scholar 

  • Ben-Shem A, Jenner L, Yusupova G, Yusupov M (2010) Crystal structure of the eukaryotic ribosome. Science 330:1203–1209

    Article  ADS  Google Scholar 

  • Berman HM, Olson WK, Beveridge BL, Westbrook J, Gelbin A, Demeny T, Hsieh SH, Srinivasan AR, Schneider B (1992) The nucleic acid database: a comprehensive relational database of three-dimensional structures of nucleic acids. Biophys J 63:751–759

    Article  Google Scholar 

  • Borgias BA, James TL (1990) Mardigras—a procedure for matrix analysis of relaxation for discerning geometry of an aqueous structure. J Magn Reson 87:475–487

    Google Scholar 

  • Brunger AT (1992) X-PLOR version 3.1 a system for X-ray crystallography and NMR. Yale University Press, New Haven

    Google Scholar 

  • Case DA (1995) Calibration of ring-current effects in proteins and nucleic acids. J Biomol NMR 6:341–346

    Article  Google Scholar 

  • Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci USA 104:9615–9620

    Article  ADS  Google Scholar 

  • Cornilescu G, Hu JS, Bax A (1999) Identification of the hydrogen bonding network in a protein by scalar couplings. J Am Chem Soc 121:2949–2950

    Article  Google Scholar 

  • Cromsigt JAMTC, Hilbers CW, Wijmenga SS (2001) Prediction of proton chemical shifts in RNA—their use in structure refinement and validation. J Biomol NMR 21:11–29

    Article  Google Scholar 

  • Dejaegere A, Bryce RA, Case DA (1999) An empirical analysis of proton chemical shifts in nucleic acids. In: Facelli JC, de Dios AC (eds) Modeling NMR chemical shifts. Gaining insight into structure and environment. American Chemical Society, Washington, DC

    Google Scholar 

  • Dickerson RE (1989) Definitions and nomenclature of nucleic acid structure parameters. J Biomol Struct Dyn 6:627–634

    Article  Google Scholar 

  • Dunkle JA, Xiong L, Mankin AS, Cate JH (2010) Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc Natl Acad Sci USA 107:17152–17157

    Article  ADS  Google Scholar 

  • Dunkle JA, Wang L, Feldman MB, Pulk A, Chen VB, Kapral GJ, Noeske J, Richardson JS, Blanchard SC, Cate JH (2011) Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332:981–984

    Article  ADS  Google Scholar 

  • Egli M, Portmann S, Usman N (1996) RNA hydration: a detailed look. Biochemistry 35:8489–8494

    Article  Google Scholar 

  • Flodell S, Petersen M, Girard F, Zdunek J, Kidd-Ljunggren K, Schleucher J, Wijmenga S (2006) Solution structure of the apical stem-loop of the human hepatitis B virus encapsidation signal. Nucleic Acids Res 34:4449–4457

    Article  Google Scholar 

  • Gelbin A, Schneider B, Clowney L, Hsieh SH, Olson WK, Berman HM (1996) Geometric parameters in nucleic acids: sugar and phosphate constituents. J Am Chem Soc 118:519–529

    Article  Google Scholar 

  • Giessner-Prettre C, Pullman B (1987) Quantum mechanical calculations of NMR chemical shifts in nucleic acids. Q Rev Biophys 20:113–172

    Article  Google Scholar 

  • Gronenborn AM, Clore GM (1989) Analysis of the relative contributions of the nuclear overhauser interproton distance restraints and the empirical energy function in the calculation of oligonucleotide structures using restrained molecular dynamics. Biochemistry 28:5978–5984

    Article  Google Scholar 

  • Grzesiek S, Sass HJ (2009) From biomolecular structure to functional understanding: new NMR developments narrow the gap. Curr Opin Struct Biol 19:585–595

    Article  Google Scholar 

  • Gurel G, Blaha G, Steitz TA, Moore PB (2009) Structures of triacetyloleandomycin and mycalamide A bind to the large ribosomal subunit of Haloarcula marismortui. Antimicrob Agents Chemother 53:5010–5014

    Article  Google Scholar 

  • Haeberli P, Berger I, Pallan PS, Egli M (2005) Syntheses of 4’-thioribonucleosides and thermodynamic stability and crystal structure of RNA oligomers with incorporated 4’-thiocytosine. Nucleic Acids Res 33:3965–3975

    Article  Google Scholar 

  • Jenner LB, Demeshkina N, Yusupova G, Yusupov M (2010) Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat Struct Mol Biol 17:555–560

    Article  Google Scholar 

  • Jin H, Kelley AC, Loakes D, Ramakrishnan V (2010) Structure of the 70S ribosome bound to release factor 2 and a substrate analog provides insights into catalysis of peptide release. Proc Natl Acad Sci USA 107:8593–8598

    Article  ADS  Google Scholar 

  • Keepers JW, James TL (1984) A theoretical studie of distance determinations from NMR. Two-dimensional nuclear overhauser effect spectra. J Magn Reson 57:404–426

    Google Scholar 

  • Kuszewski J, Schwieters C, Clore GM (2001) Improving the accuracy of NMR structures of DNA by means of a database potential of mean force describing base–base positional interactions. J Am Chem Soc 123:3903–3918

    Article  Google Scholar 

  • Lam SL, Chi LM (2010) Use of chemical shifts for structural studies of nucleic acids. Prog Nucl Magn Reson Spectrosc 56:289–310

    Article  Google Scholar 

  • Lu XJ, Olson WK (2003) 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res 31:5108–5121

    Article  Google Scholar 

  • Marcheschi RJ, Staple DW, Butcher SE (2007) Programmed ribosomal frameshifting in SIV is induced by a highly STRUCTURED RNA stem–loop. J Mol Biol 373:652–663

    Article  Google Scholar 

  • McDowell JA, He LY, Chen XY, Turner DH (1997) Investigation of the structural basis for thermodynamic stabilities of tandem GU wobble pairs: NMR structures of (rGGAGUUCC)(2) and (rGGAUGUCC)(2). Biochemistry 36:8030–8038

    Article  Google Scholar 

  • Mielke SP, Krishnan VV (2009) Characterization of protein secondary structure from NMR chemical shifts. Prog Nucl Magn Reson Spectrosc 54:141–165

    Article  Google Scholar 

  • Mollova E, Pardi A (2000) NMR Solution structure determination of RNAs. Curr Opin Struct Biol 10:298–302

    Article  Google Scholar 

  • Mooren MMW, Pulleyblank DE, Wijmenga SS, Vandeven FJM, Hilbers CW (1994) The solution structure of the hairpin formed by d(TCTCTC-TTT-GAGAGA). Biochemistry 33:7315–7325

    Article  Google Scholar 

  • Musselman C, Pitt SW, Gulati K, Foster LL, Andricioaei I, Al-Hashimi HM (2006) Impact of static and dynamic A-form heterogeneity on the determination of RNA global structure dynamics using NMR residual dipolar couplings. J Biomol NMR 36:235–249

    Article  Google Scholar 

  • Olson WK, Bansal M, Burley SK, Dickerson RE, Gerstein M, Harvey SC, Heinemann U, Lu XJ, Neidle S, Shakked Z, Sklenar H, Suzuki M, Tung CS, Westhof E, Wolberger C, Berman HM (2001) A standard reference frame for the description of nucleic acid base-pair geometry. J Mol Biol 313:229–237

    Article  Google Scholar 

  • Olson WK, Esguerra M, Xin Y, Lu X (2009) New information content in RNA base pairing deduced from quantitative analysis of high-resolution structures. Methods 47:177–186

    Article  Google Scholar 

  • Pardi A, Hare DR, Wang C (1988) Determination of DNA structures by NMR and distance geometry techniques: a computer simulation. Proc Natl Acad Sci USA 85:8785–8789

    Article  ADS  Google Scholar 

  • Petzold K, Duchardt E, Flodell S, Larsson G, Kidd-Ljunggren K, Wijmenga S, Schleucher J (2007) Conserved nucleotides in an RNA essential for hepatitis B virus replication show distinct mobility patterns. Nucleic Acids Res 35:6854–6861

    Article  Google Scholar 

  • Popenda M, Szachniuk M, Blazewicz M, Wasik S, Burke EK, Blazewicz J, Adamiak RW (2010) RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures. BMC Bioinformatics 11:231–237

    Article  Google Scholar 

  • Portmann S, Usman N, Egli M (1995) The crystal-structure of R(Ccccgggg) in 2 distinct lattices. Biochemistry 34:7569–7575

    Article  Google Scholar 

  • Ramesh A, Wakeman CA, Winkler WC (2011) Insights into metalloregulation by M-box riboswitch RNAs via structural analysis of manganese-bound complexes. J Mol Biol 407:556–570

    Article  Google Scholar 

  • Ribas-Prado R, Giessner-Prettre C (1981) Parameters for the calculation of the ring current and atomic magnetic anisotropy contributions to magnetic shielding constants: nucleic acid bases and intercalating agents. J Mol Struct THEOCHEM 76:81–92

    Article  Google Scholar 

  • Shajani Z, Varani G (2007) NMR studies of dynamics in RNA and DNA by C-13 relaxation. Biopolymers 86:348–359

    Article  Google Scholar 

  • Shen Y, Lange O, Delagio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105:4685–4690

    Article  ADS  Google Scholar 

  • Shen Y, Vernon R, Baker D, Bax A (2009) De novo protein structure generation from incomplete chemical shift assignments. J Biomol NMR 43:63–78

    Article  Google Scholar 

  • Sibille N, Pardi A, Simorre JP, Blackledge M (2001) Refinement of local and long-range structural order in theophylline-binding RNA using C-13-H-1 residual dipolar couplings and restrained molecular dynamics. J Am Chem Soc 123:12135–12146

    Article  Google Scholar 

  • Staple DW, Butcher SE (2003) Solution structure of the HIV-1 frameshift inducing stem-loop RNA. Nucleic Acids Res 31:4326–4331

    Article  Google Scholar 

  • Tolbert BS, Miyazaki Y, Barton S, Kinde B, Starck P, Singh R, Bax A, Case DA, Summers MF (2010) Major groove width variations in RNA structures determined by NMR and impact of 13C residual chemical shift anisotropy and 1H–13C residual dipolar coupling on refinement. J Biomol NMR 47:205–219

    Article  Google Scholar 

  • Tukalo M, Yaremchuk A, Fukunaga R, Yokoyama S, Cusack S (2005) The crystal structure of leucyl-tRNA synthetase complexed with tRNA(Leu) in the post-transfer- editing conformation. Nat Struct Mol Biol 12:923–930

    Article  Google Scholar 

  • Varani G, Aboul-ela F, Allain FHT (1996) NMR investigation of RNA structure. Prog Nucl Magn Reson Spectrosc 29:51–127

    Article  Google Scholar 

  • Vicens Q, Westhof E (2002) Crystal structure of a complex between the aminoglycoside tobramycin and an oligonucleotide containing the ribosomal decoding A site. Chem Biol 9:747–755

    Article  Google Scholar 

  • Wijmenga SS, van Buuren BNM (1998) The use of NMR methods for conformational studies of nucleic acids. Prog Nucl Magn Reson Spectrosc 32:287–387

    Article  Google Scholar 

  • Wijmenga SS, Heus HA, Werten B, Vandermarel GA, Vanboom JH, Hilbers CW (1994) Assignment strategies and analysis of cross-peak patterns and intensities in the 3-dimensional homonuclear TOCSY-NOESY of RNA. J Magn Reson Ser B 103:134–141

    Article  Google Scholar 

  • Wijmenga SS, Heus HA, Leeuw HAE, Hoppe H, van der Graaf M, Hilbers CW (1995) Sequential backbone assignment of uniformly C13-labeled RNAs by a 2-dimensional P(CC)H-TOCSY triple-resonance NMR experiment. J Biomol NMR 5:82–86

    Article  Google Scholar 

  • Wijmenga SS, Kruithof M, Hilbers CW (1997) Analysis of H-1 chemical shifts in DNA: assessment of the reliability of H-1 chemical shift calculations for use in structure refinement. J Biomol NMR 10:337–350

    Article  Google Scholar 

  • Wishart DS, Arndt D, Berjanskii M, Tang P, Zhou J, Lin G (2008) CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data. Nucleic Acids Res 36:W496–W502

    Article  Google Scholar 

Download references

Acknowledgments

The 6th framework program of the EU, project FSG-V-RNA, is acknowledged for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sybren S. Wijmenga.

Additional information

Software Available: NUCHEMICS and the python script, CHEOPS, are available upon request. 3DNA can be obtained via the website: http://adna.rutgers.edu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10858_2013_9725_MOESM1_ESM.pdf

Details on calculation procedures, including analysis of chemical shift optimized and deposited structures (RMSDs, helix parameters etc.). (PDF 1672 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Werf, R.M., Tessari, M. & Wijmenga, S.S. Nucleic acid helix structure determination from NMR proton chemical shifts. J Biomol NMR 56, 95–112 (2013). https://doi.org/10.1007/s10858-013-9725-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9725-y

Keywords

Navigation