Skip to main content
Log in

Sequential backbone assignment of uniformly 13C-labeled RNAs by a two-dimensional P(CC)H-TOCSY triple resonance NMR experiment

  • Short Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

A new 1H−13C−31P triple resonance experiment is described which allows unambigous sequential backbone assignment in 13C-labeled oligonucleotides via through-bond coherence transfer from 31P via 13C to 1H. The approach employs INEPT to transfer coherence from 31P to 13C and homonuclear TOCSY to transfer the 13C coherence through the ribose ring, followed by 13C to 1H J-cross-polarisation. The efficiencies of the various possible transfer pathways are discussed. The most efficient route involves transfer of 31Pi coherence via C4′i and C4′i-1, because of the relatively large J′PC4 couplings involved. Via the homonuclear and heteronuclear mixing periods, the C4′i and C4′i-1 coherences are subsequently transferred to, amongst others, H1′i and H1′i-1, respectively, leading to a 2D 1H−31P spectrum which allows a sequential assignment in the 31P−1H1′ region of the spectrum, i.e. in the region where the proton resonances overlap least. The experiment is demonstrated on a 13C-labeled RNA hairpin with the sequence 5′(GGGC-CAAA-GCCU)3′.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • BateyR.T., InadaM., KuyawinskiE., PuglisiJ.D. and WilliamsonJ.R. (1993) Nucleic Acids Res., 20, 4515–4523.

    Google Scholar 

  • BaxA. and IkuraM. (1991) J. Biomol. NMR, 1, 99–105.

    Article  Google Scholar 

  • CloreG.M. and GronenbornA.M. (1990) Annu. Rev. Biophys. Biophys. Chem., 20, 29–63.

    Google Scholar 

  • CloreG.M. and GronenbornA.M. (1991) Science, 252, 1390–1399.

    ADS  Google Scholar 

  • FarmerIIB.T., MüllerL., NikonowiczE.P. and PardiA. (1993) J. Am. Chem. Soc., 115, 11040–11041.

    Google Scholar 

  • FarmerIIB.T., MüllerL., NikonowiczE.P. and PardiA. (1994) J. Biomol. NMR, 4, 129–133.

    Google Scholar 

  • BrzesiekS. and BaxA. (1992) J. Magn. Reson., 96, 432–440.

    Google Scholar 

  • HeusH.A., WijmengaS.S., Van deVenF.J.M. and HilbersC.W. (1994) J. Am. Chem. Soc., 116, 4983–4984.

    Article  Google Scholar 

  • IkuraM., KayL.E. and BaxA. (1990) Biochemistry, 29, 4659–4667.

    Article  Google Scholar 

  • IkuraM., KayL.E. and BaxA. (1991) Biochemistry, 30, 5498–5504.

    Google Scholar 

  • KayL.E., IkuraM., TschudinR. and BaxA. (1990) J. Magn. Reson., 89, 496–514.

    Google Scholar 

  • KayL.E., IkuraM. and BaxA. (1991) J. Magn. Reson., 91, 84–87.

    Google Scholar 

  • KelloggG.W. and SchweitzerB.I. (1993) J. Biomol. NMR, 3, 577–595.

    Article  Google Scholar 

  • LegaultP., FarmerIIB.T., MüllerL. and PardiA. (1994) J. Am. Chem. Soc., 116, 2203–2204.

    Google Scholar 

  • MarinoJ.P., PrestegardJ.H. and CrothersD.M. (1994) J. Am. Chem. Soc., 116, 2205–2206.

    Google Scholar 

  • MarionD. and WüthrichK. (1983) Biochem. Biophys. Res. Commun., 113, 967–974.

    Article  Google Scholar 

  • MichnickaM.J., HarperJ.W. and KingG.C. (1993) Biochemistry, 32, 395–400.

    Article  Google Scholar 

  • MoorenM.M.W., HilbersC.W., Van derMarelG.A., VanBoomJ.H. and WijmengaS.S. (1991) J. Magn. Reson., 94, 101–111.

    Google Scholar 

  • NikonowiczE.P. and PardiA. (1993) J. Mol. Biol., 232, 1141–1156.

    Article  Google Scholar 

  • NikonowiczE.P., SirrA., LegaultP., JuckerF.M., BaerL.M. and PardiA. (1992) Nucleic Acids Res., 20, 4507–4513.

    Google Scholar 

  • PowersR., GronenbornA.M., CloreG.M. and BaxA. (1991) J. Magn. Reson., 94, 209–213.

    Google Scholar 

  • ShakaA.J., LeeC.J. and PinesA. (1988) J. Magn. Reson., 77, 274–280.

    Google Scholar 

  • ShakaA.J., BarkerP.B. and FreemanR.J. (1985) J. Magn. Reson., 64, 547–552.

    Google Scholar 

  • SimonE.S., GrabowskiS. and WhitesidesG.M. (1990) J. Org. Chem., 55, 1834–1847.

    Article  Google Scholar 

  • SklenářV., PetersonR.D., RejanteM.R., WangA. and FeigonJ. (1993a) J. Am. Chem. Soc., 115, 12181–12182.

    Google Scholar 

  • SklenářV., PetersonR.D., RejanteM.R., WangA., and FeigonJ. (1993b) J. Biomol. NMR, 3, 721–727.

    Google Scholar 

  • WijmengaS.S., MoorenM.M.W. and HilbersC.W. (1993) In NMR of Macromolecules (Ed., RobertG.C.K.) Oxford University Press, Oxford, pp. 217–288.

    Google Scholar 

  • WijmengaS.S., HeusH.A., Van deVenF.J.M. and HilbersC.W. (1994a) In NMR of Biological Macromolecules (Ed., StassinopoulouC.I.) NATO ASI Series, Vol. 87, Springer, Berlin, pp. 307–322.

    Google Scholar 

  • Wijmenga, S.S., Hoppe, H., Van der Graaf, M., Heus, H.A. and Hilbers, C.W. (1994b) manuscript in preparation.

  • WijmengaS.S., HeusH.A., WertenB.A., Van derMarelG.A., VanBoomJ.H. and HilbersC.W. (1994c) J. Magn. Reson. Ser. B, 103, 134–141.

    Article  Google Scholar 

  • WüthrickK. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.

    Google Scholar 

  • ZuiderwegE.R.P. (1990) J. Magn. Reson., 89, 533–542.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wijmenga, S.S., Heus, H.A., Leeuw, H.A.E. et al. Sequential backbone assignment of uniformly 13C-labeled RNAs by a two-dimensional P(CC)H-TOCSY triple resonance NMR experiment. J Biomol NMR 5, 82–86 (1995). https://doi.org/10.1007/BF00227472

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00227472

Keywords

Navigation