Skip to main content
Log in

Improving thin film flexible supercapacitor electrode properties using ion-track technology

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel self-supporting carbon thin film flexible supercapacitor electrode with high volumetric and areal capacitance was developed. The increase in capacitance performance is achieved by introducing channels across the carbon thin film using ion-track technology. In the first step of the electrode synthesis, latent tracks are inscribed in the starting polyimide (Kapton) foil by irradiation with 253 MeV Kr ions. Next, macropores in the form of cylindrical channels are formed by selective chemical etching with NaOCl along the ion tracks, creating ion-track polymer. With subsequent carbonization and activation of the ion-track polymer, activated ion-track carbon is produced. A range of samples are obtained by varying the chemical etching time of the irradiated polymer. In addition to channel formation the chemical etching time influences the composition of surface functional groups. The best results are obtained by chemical etching for 40 min, the thickness of the sample is 21 µm with channel density 2.4 × 106 cm−2 and average channel diameter 430 nm. Beside cylindrical macro channels this material is mainly microporous with 0.62 nm pore diameter and shows the highest areal (494 mF/cm2), volumetric (224 F/cm3) and gravimetric (178 F/g) capacitance. As a consequence of channel formation, the rate capability of the supercapacitor was also increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)

    CAS  Google Scholar 

  2. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. (Springer, New York, 2013)

    Google Scholar 

  3. Y. Gogotsi, P. Simon, Sci. Mag. 334, 917 (2011)

    CAS  Google Scholar 

  4. Q. Wang, J. Yan, Z. Fan, Energy Environ. Sci. 9, 729 (2016)

    CAS  Google Scholar 

  5. C. Zhang, W. Lv, Y. Tao, Q.-H. Yang, Energy Environ. Sci. 8, 1390 (2015)

    CAS  Google Scholar 

  6. Y. Xu, Z. Lin, X. Huang, Y. Liu, Y. Huang, X. Duan, ACS Nano. 7, 4042 (2013)

    CAS  Google Scholar 

  7. D. Zhang, M. Miao, H. Niu, Z. Wei, ACS Nano. 8, 4571 (2014)

    CAS  Google Scholar 

  8. M. Seredych, D. Hulicova-Jurcakova, G.Q. Lu, T.J. Bandosz, Carbon N. Y. 46, 1475 (2008)

    CAS  Google Scholar 

  9. T. Sun, C. Wang, D. Jiao, M. Zhu, S. Lv, J. Xiang, C. Qin, J. Mater. Sci. Mater. Electron. 28, 8993 (2017)

    CAS  Google Scholar 

  10. Y. Liu, Y. Chen, J. Zhang, J. Mater. Sci. Mater. Electron. 28, 9301 (2017)

    CAS  Google Scholar 

  11. M. Zhou, F. Pu, Z. Wang, S. Guan, Carbon N. Y. 68, 185 (2014)

    CAS  Google Scholar 

  12. Q. Wang, J. Yan, Z. Fan, Electrochim. Acta. 146, 548 (2014)

    CAS  Google Scholar 

  13. Z. Laušević, P.Y. Apel, J.B. Krstić, I.V. Blonskaya, Carbon N. Y. 64, 456 (2013)

    Google Scholar 

  14. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Science. 313, 1760 (2006)

    CAS  Google Scholar 

  15. D.T.L. Galhena, B.C. Bayer, S. Hofmann, G.A.J. Amaratunga, ACS Nano. 10, 747 (2016)

    CAS  Google Scholar 

  16. P. Simon, Y. Gogotsi, Acc. Chem. Res. 46, 1094 (2013)

    CAS  Google Scholar 

  17. B. Song, J. Zhao, M. Wang, J. Mullavey, Y. Zhu, Z. Geng, D. Chen, Y. Ding, K. Moon, M. Liu, C.-P. Wong, Nano Energy. 31, 183 (2017)

    CAS  Google Scholar 

  18. H. Zhang, K. Wang, X. Zhang, H. Lin, X. Sun, C. Li, Y. Ma, J. Mater. Chem. A. 3, 11277 (2015)

    CAS  Google Scholar 

  19. K. Fic, G. Lota, M. Meller, E. Frackowiak, Energy Environ. Sci. 5, 5842 (2012)

    CAS  Google Scholar 

  20. P. Apel, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 208, 11 (2003)

    CAS  Google Scholar 

  21. B.E. Fischer, R. Spohr, Rev. Mod. Phys. 55, 907 (1983)

    CAS  Google Scholar 

  22. C. Trautmann, W. Brüchle, R. Spohr, J. Vetter, N. Angert, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms. 111, 70 (1996)

    CAS  Google Scholar 

  23. L. Klintberg, M. Lindeberg, G. Thornell, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 184, 536 (2001)

    CAS  Google Scholar 

  24. E.M.V. Hoek, V.V. Tarabara, Encyclopedia of Membrane Science and Technology. (Wiley, Hoboken, NJ, 2013)

    Google Scholar 

  25. H. Kawada, K. Ando, T. Tsuji, Y. Shimakura, Y. Nakamura, J. Chargui, M. Hagihara, H. Itagaki, T. Shimizu, S. Inokuchi, S. Kato, T. Hotta, Exp. Hematol. 27, 904 (1999)

    CAS  Google Scholar 

  26. L. Alfonta, O. Bukelman, A. Chandra, W.R. Fahrner, D. Fink, D. Fuks, V. Golovanov, V. Hnatowicz, K. Hoppe, A. Kiv, I. Klinkovich, M. Landau, J.R. Morante, N.V. Tkachenko, J. Vacík, M. Valden, Radiat. Eff. Defects Solids. 164, 431 (2009)

    CAS  Google Scholar 

  27. M.E. Toimil-Molares, Beilstein J. Nanotechnol. 3, 860 (2012)

    Google Scholar 

  28. F. Muench, M. Oezaslan, T. Seidl, S. Lauterbach, P. Strasser, H.-J. Kleebe, W. Ensinger, Appl. Phys. A. 105, 847 (2011)

    CAS  Google Scholar 

  29. Z. Laušević, P.Y. Apel, I.V. Blonskaya, Carbon N. Y. 49, 4948 (2011)

    Google Scholar 

  30. F. Muench, T. Seidl, M. Rauber, B. Peter, J. Brötz, M. Krause, C. Trautmann, C. Roth, S. Katusic, W. Ensinger, Mater. Chem. Phys. 148, 846 (2014)

    CAS  Google Scholar 

  31. F. Stoeckli, P. Rebstein, L. Ballerini, Carbon N. Y. 28, 907 (1990)

    CAS  Google Scholar 

  32. T. Xing, Y. Zheng, L.H. Li, B.C.C. Cowie, D. Gunzelmann, S.Z. Qiao, S. Huang, Y. Chen, ACS Nano. 8, 6856 (2014)

    CAS  Google Scholar 

  33. C. Bourgerette, A. Oberlin, M. Inagaki, J. Mater. Res. 7, 1158 (2011)

    Google Scholar 

  34. Y. Qin, Q. Peng, Y. Ding, Z. Lin, C. Wang, Y. Li, F. Xu, J. Li, Y. Yuan, X. He, Y. Li, ACS Nano. 9, 8933 (2015)

    CAS  Google Scholar 

  35. A. Ektessabi, S. Hakamata, Thin Solid Films. 377–378, 621 (2000)

    Google Scholar 

  36. F. Kapteijn, J.A. Moulijn, S. Matzner, H.-P. Boehm, Carbon N. Y. 37, 1143 (1999)

    CAS  Google Scholar 

  37. D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, T.J. Bandosz, Adv. Funct. Mater. 19, 438 (2009)

    CAS  Google Scholar 

  38. D. Mang, H.P. Boehm, K. Stanczyk, H. Marsh, Carbon N. Y. 30, 391 (1992)

    CAS  Google Scholar 

  39. A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, J. Phys. Chem. C. 115, 17009 (2011)

    CAS  Google Scholar 

  40. N. Jung, S. Kwon, D. Lee, D.-M. Yoon, Y.M. Park, A. Benayad, J.-Y. Choi, J.S. Park, Adv. Mater. 25, 6854 (2013)

    CAS  Google Scholar 

  41. L. Huang, C. Li, G. Shi, J. Mater. Chem. A. 2, 968 (2014)

    CAS  Google Scholar 

  42. X. Han, M.R. Funk, F. Shen, Y.-C. Chen, Y. Li, C.J. Campbell, J. Dai, X. Yang, J.-W. Kim, Y. Liao, J.W. Connell, V. Barone, Z. Chen, Y. Lin, L. Hu, ACS Nano. 8, 8255 (2014)

    CAS  Google Scholar 

  43. L. Jiang, L. Sheng, C. Long, Z. Fan, Nano Energy. 11, 471 (2015)

    CAS  Google Scholar 

  44. J. Yan, Q. Wang, C. Lin, T. Wei, Z. Fan, Adv. Energy Mater. 4, 1400500 (2014)

    Google Scholar 

  45. H. Li, D. Yuan, C. Tang, S. Wang, J. Sun, Z. Li, T. Tang, F. Wang, H. Gong, C. He, Carbon N. Y. 100, 151 (2016)

    CAS  Google Scholar 

  46. X. Ye, Q. Zhou, C. Jia, Z. Tang, Y. Zhu, Z. Wan, Carbon N. Y. 114, 424 (2017)

    CAS  Google Scholar 

  47. X. Yu, J. Wang, Z.-H. Huang, W. Shen, F. Kang, Electrochem. Commun. 36, 66 (2013)

    CAS  Google Scholar 

  48. P.L. Taberna, P. Simon, J.F. Fauvarque, J. Electrochem. Soc. 150, A292 (2003)

    CAS  Google Scholar 

  49. J. Chmiola, G. Yushin, R. Dash, Y. Gogotsi, J. Power Sources. 158, 765 (2006)

    CAS  Google Scholar 

  50. J.H. Lee, N. Park, B.G. Kim, D.S. Jung, K. Im, J. Hur, J.W. Choi, ACS Nano. 7, 9366 (2013)

    CAS  Google Scholar 

  51. W.-H. Qu, Y.-Y. Xu, A.-H. Lu, X.-Q. Zhang, W.-C. Li, Bioresour. Technol. 189, 285 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Ministry of Education, Science and Technological Development of the Republic of Serbia through projects: III 45006; OI 172045 and the project within the Cooperation Agreement between the Joint Institute for Nuclear Research (JINR), Dubna, Russian Federation, and the Ministry of Education, Science and Technological Development of the Republic of Serbia. SEM images done courteously by Lizunov N.E., JINR, Dubna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petar Laušević.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laušević, P., Pejović, P., Žugić, D. et al. Improving thin film flexible supercapacitor electrode properties using ion-track technology. J Mater Sci: Mater Electron 29, 7489–7500 (2018). https://doi.org/10.1007/s10854-018-8740-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8740-x

Navigation