Skip to main content
Log in

Some physical properties and Vickers hardness measurements of Fe diffusion-doped Bi1.8Pb0.35Sr1.9Ca2.1Cu3Oy superconductors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study we have investigated the influence of iron diffusion and diffusion-annealing time on the mechanical and the superconducting properties of bulk Bi1.8Pb0.35Sr1.9Ca2.1Cu3Oy superconductors by performing X-ray diffraction (XRD), scanning electron microscopy (SEM), Vickers hardness, dc resistivity (ρ-T) and critical current density (Jc) measurements. The samples are prepared by the conventional solid-state reaction method. Doping of Bi-2223 was carried out by means of iron diffusion during sintering from an evaporated iron film on pellets. Then, the Fe layered superconducting samples were annealed at 830 °C for 10, 30 and 60 h. The mechanical properties of the compounds have been investigated by measuring the Vickers hardness (Hv). The mechanical properties of the samples were found to be load dependent. The load independent Vickers hardness (H0), Young’s modulus (E), yield strength (Y), and fracture toughness (KIC) values of the samples are calculated. These all measurements showed that the values of the Vickers hardness, critical current density, and critical transition temperature and lattice parameter c increased with increasing Fe doping and diffusion-annealing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, Jpn. J. Appl. Phys. 27(2), L209 (1988)

    Article  CAS  Google Scholar 

  2. L. Gao, J.Z. Huang, L.R. Meng, H.P. Hor, J. Bechtold, Y.Y. Sun, W.C. Chu, Z.Z. Chen, M.A. Herman, Nature 332, 623 (1988)

    Article  CAS  Google Scholar 

  3. W.C. Chu, J. Bechtold, L. Gao, H.P. Hor, J.Z. Huang, L.R. Meng, Y.Y. Sun, Y.Q. Wang, Y.Y. Zue, Phys. Rev. Lett. 60, 941 (1988)

    Article  CAS  Google Scholar 

  4. L.J. Tallon, G.R. Buckley, W.P. Gilbert, R.M. Presland, M.W.I. Brown, E.M. Bowder, A.L. Christan, R. Gafull, Nature 333, 153 (1988)

    Article  CAS  Google Scholar 

  5. H. Abbasi, J. Taghipour, H. Sedghi, J. Alloys Compd. 482, 552–555 (2009)

    Article  CAS  Google Scholar 

  6. S.X. Dou, H.K. Lin, A.J. Bourdillon, J.P. Zhou, N.X. Tan, X.Y. Sun, C.C. Sorrell, J. Am. Ceram. Soc. 71, 329 (1988)

    Article  Google Scholar 

  7. S.X. Dou, N. Savides, X.Y. Sun, A.J. Bourdillon, C.C. Sorrell, J.P. Zhou, K.E. Easterling, J. Phys. C: Solid State Phys. 20, 1003 (1987)

    Article  Google Scholar 

  8. S.X. Dou, H.K. Liu, S.J. Guo, K.E. Easterling, J. Mickeel, Supercond. Sci. Technol. 2, 274 (1990)

    Article  Google Scholar 

  9. G. Xion, F.H. Streitz, M.Z. Cieplak, A. Bakhshei, A. Gourin, C.L. Chien, Phys. Rev. B 38, 776 (1988)

    Article  Google Scholar 

  10. S. Jin, R.C. Sherwood, T.H. Tiefel, G.W. Kammlott, Appl. Phys. Lett. 52, 1628 (1998)

    Article  Google Scholar 

  11. M. Yilmazlar, O. Ozturk, O. Gorur, I. Belenli, C. Terzioglu, Supercond. Sci. Technol. 20, 365–371 (2007)

    Article  CAS  Google Scholar 

  12. O. Ozturk, T. Küçükömeröğlu, C. Terzioglu, J. Phys, Condens. Matter 19, 346205 (2007)

    Article  Google Scholar 

  13. C. Terzioglu, O. Ozturk, I. Belenli, J. Alloys Compd. 471, 142–146 (2009)

    Article  CAS  Google Scholar 

  14. O. Ozturk, M. Akdogan, C. Terzioglu, A. Gencer, J. Phys. Conf. Ser. 153, 012024 (2009)

    Article  Google Scholar 

  15. O. Ozturk, C. Terzioglu, I. Belenli, J. Supercond. Nov. Magn. 24, 381–390 (2011)

    Article  CAS  Google Scholar 

  16. C. Terzioglu, M. Yilmazlar, O. Ozturk, E. Yanmaz, Physica C 423, 119 (2005)

    Article  CAS  Google Scholar 

  17. M. Yilmazlar, H.A. Cetinkara, M. Nursoy, O. Ozturk, C. Terzioglu, Physica C 442, 101 (2006)

    Article  CAS  Google Scholar 

  18. M. Yilmazlar, O. Ozturk, H. Aydın, M. Akdogan, C. Terzioglu, Chinese J. Phys. 45(2-I), 128–134 (2007)

    CAS  Google Scholar 

  19. O. Ozturk, H.A. Cetinkara, E. Asikuzun, M. Akdogan, M. Yilmazlar, C. Terzioglu, J. Mater. Sci.: Mater. Electron 22, 1501–1508 (2011)

    Article  CAS  Google Scholar 

  20. S.M. Khalil, J. Phys. Chem. Solids 62, 457 (2001)

    Article  CAS  Google Scholar 

  21. Y.C. Chen, K.K. Chong, T.H. Meen, Jpn. J. Appl. Phys. 30, L33 (1991)

    Article  Google Scholar 

  22. K.H. Yoon, Y.B. Lee, J. Mater. Sci. 26, 5101 (1991)

    Article  CAS  Google Scholar 

  23. P. Kameli, H. Salamati, M. Eslami, Solid State Commun 137, 30–35 (2006)

    Article  CAS  Google Scholar 

  24. O. Ozturk, D. Yegen, M. Yilmazlar, A. Varilci, C. Terzioglu, Physica C 451, 113–117 (2007)

    Article  CAS  Google Scholar 

  25. A. Leenders, M. Ullrich, H.C. Freyhardt, Physica C 279, 173 (1997)

    Article  CAS  Google Scholar 

  26. E. Bruneel, J. Degrieck, I. Van Driessche, S. Hoste, Physica C 1063, 372–376 (2002)

    Google Scholar 

  27. H.C. Ling, M.F. Yan, J. Appl. Phys. 64, 1307 (1988)

    Article  CAS  Google Scholar 

  28. A. Murakami, K. Katagiri, K. Noto, K. Kasaba, Y. Sohoji, M. Muralidhar, N. Sakai, M. Murakami, Physica C 794, 378–381 (2002)

    Google Scholar 

  29. J. Gong, J. Wu, Z. Guan, Mater. Lett. 38, 197 (1999)

    Article  CAS  Google Scholar 

  30. K. Sangwal, B. Surowska, Mater. Res. Innov. 7, 91 (2003)

    CAS  Google Scholar 

  31. R. Tickoo, R.P. Tandon, K.K. Bamzai, P.N. Kotru, Mater. Chem. Phys. 42, 446 (2003)

    Article  Google Scholar 

  32. A.A. Elmustafa, D.S. Stone, J. Mech. Phys. Solid 51, 357 (2003)

    Article  CAS  Google Scholar 

  33. F. Fröhlinch, P. Grau, W. Grellmann, Phys. Status Solid 42, 79 (1997)

    Google Scholar 

  34. H. Li, R.C. Bradt, J. Mater. Sci. 22, 917 (1993)

    Article  Google Scholar 

  35. C. Hays, E.G. Kendall, Metallography 6(4), 275 (1973)

    Article  CAS  Google Scholar 

  36. J. Gong, J. Wu, Z. Guan, J. Eur. Ceram. Soc. 19, 2625 (1999)

    Article  CAS  Google Scholar 

  37. Z. Li, A. Ghosh, A.S. Kobayashi, J. Am. Soc. 72, 904 (1989)

    CAS  Google Scholar 

  38. K. Hirao, M. Tomozawa, J. Am. Ceram. Soc. 70, 497 (1997)

    Article  Google Scholar 

  39. E.O. Bernhardt, Z. Metall. 33, 135 (1941)

    CAS  Google Scholar 

  40. S.M. Khalil, Smart Mater. Struct. 14, 804 (2005)

    Article  CAS  Google Scholar 

  41. C. Veerender, V.R. Dumke, M. Nagabhooshanam, Phys. Status Solid A 144, 199 (1994)

    Article  Google Scholar 

  42. F.A. McClintock, A.S. Argon, Mechanical behaviour of materials (Addison-Wesley, Reading, 1996), p. 455

    Google Scholar 

  43. D. Tabor, The hardness of metals (Clarendon, Oxford, 1951)

    Google Scholar 

  44. B.Y. Farber, N.S. Sidorov, V.I. Kulakov, A.Y. Lunin, A.N. Izotov, G.A. Emel’chenko, V.S. Bobrov, L.S. Fomenko, V.D. Natsik, S.V. Lubenets, Superconductivity 4, 2296 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Ozturk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozturk, O. Some physical properties and Vickers hardness measurements of Fe diffusion-doped Bi1.8Pb0.35Sr1.9Ca2.1Cu3Oy superconductors. J Mater Sci: Mater Electron 23, 1235–1242 (2012). https://doi.org/10.1007/s10854-011-0580-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-011-0580-x

Keywords

Navigation