Skip to main content

Advertisement

Log in

A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Nanoporous metals and nanoporous metal oxide-based materials are representative type of porous and nanosized structure materials. They have many excellent performances (e.g., unique pore structure, large clear surface area and high electrical conductivity) to be prodigiously promising potentials, for a variety of significant applications (e.g., energy storage, sensing and catalysis). Therefore, this review summarized the recent advances in the development of nanoporous metals/metal oxide-based materials, with special emphasis on superior electrochemical applications: supercapacitors, lithium ion batteries, sensing, electrocatalysis and photocatalysis. The significant and representative studies in each area are comprehensively reviewed and discussed as a reference for researchers working in related areas. We also outline the key challenges and future opportunities in this exciting field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Scheme 1
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Zhang J, Li CM (2012) Nanoporous metals: fabrication strategies and advanced electrochemical applications in catalysis, sensing and energy systems. Chem Soc Rev 41:7016–7031

    CAS  Google Scholar 

  2. Qiu HJ, Xu HT, Liu L, Wang Y (2014) Correlation of the structure and applications of dealloyed nanoporous metals in catalysis and energy conversion/storage. Nanoscale 7:386–400

    Google Scholar 

  3. Bae JH, Han JH, Chung TD (2012) Electrochemistry at nanoporous interfaces: new opportunity for electrocatalysis. Phys Chem Chem Phys 14:448–463

    CAS  Google Scholar 

  4. Qiao Y, Li CM (2010) Nanostructured catalysts in fuel cells. J Mater Chem 21:4027–4036

    Google Scholar 

  5. Zheng XT, Li CM (2012) Single cell analysis at the nanoscale. Chem Soc Rev 41:2061–2071

    CAS  Google Scholar 

  6. Lang X, Hirata A, Fujita T, Chen M (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6:232–236

    CAS  Google Scholar 

  7. Jiang LB, Yuan XZ, Liang J, Zhang J, Wang H, Zeng GM (2016) Nanostructured core-shell electrode materials for electrochemical capacitors. J Power Sources 331:408–425

    CAS  Google Scholar 

  8. Ding Y, Zhang Z (2016) Nanoporous metals for supercapacitor applications. Springer, Berlin, pp 137–173

    Google Scholar 

  9. Zhang J, Zhao XS (2012) On the configuration of supercapacitors for maximizing electrochemical performance. Chemsuschem 5:818–841

    CAS  Google Scholar 

  10. Zhang J, Jiang J, Zhao XS (2011) Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets. J Phys Chem C 115:6448–6454

    CAS  Google Scholar 

  11. Xu J, Lan G, Cao J, Wang W, Chen Z (2010) Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochim Acta 56:732–736

    CAS  Google Scholar 

  12. Qiu HJ, Kang JL, Liu P, Hirata A, Fujita T, Chen MW (2014) Fabrication of large-scale nanoporous nickel with a tunable pore size for energy storage. J Power Sources 247:896–905

    CAS  Google Scholar 

  13. Attard GS, Wang JH (1997) Mesoporous platinum films from lyotropic liquid crystalline phases. Science 278:838–840

    CAS  Google Scholar 

  14. Kim SI, Kim SW, Jung K, Kim JB, Jang JH (2016) Ideal nanoporous gold based supercapacitors with theoretical capacitance and high energy/power density. Nano Energy 24:17–24

    CAS  Google Scholar 

  15. Kertis F, Snyder J, Govada L, Khurshid S, Chayen N, Erlebacher J (2010) Structure/processing relationships in the fabrication of nanoporous gold. JOM 62:50–56

    CAS  Google Scholar 

  16. Chen T, Wang G, Ning Q (2017) Rationally designed three-dimensional NiMoO4/Polypyrrole core-shell nanostructures for high-performance supercapacitors. NANO 114:6–9

    Google Scholar 

  17. Prasad KPS, Dhawale DS, Sivakumar T et al (2011) Fabrication and textural characterization of nanoporous carbon electrodes embedded with CuO nanoparticles for supercapacitors. Sci Technol Adv Mater 12:044602

    Google Scholar 

  18. Patake VD, Joshi SS, Lokhande CD, Joo OS (2009) Electrodeposited porous and amorphous copper oxide film for application in supercapacitor. Mater Chem Phys 114:6–9

    CAS  Google Scholar 

  19. Dubal DP, Dhawale DS, Salunkhe RR, Jamdade VS, Lokhande CD (2010) Fabrication of copper oxide multilayer nanosheets for supercapacitor application. J Alloy Compd 492:26–30

    CAS  Google Scholar 

  20. Chen PC, Hsieh SJ, Zou J, Chen CC (2014) Selectively dealloyed Ti/TiO2 network nanostructures for supercapacitor application. Mater Lett 133:175–178

    CAS  Google Scholar 

  21. Ambade RB, Ambade SB, Shrestha NK et al (2016) Controlled growth of polythiophene nanofibers in TiO2 nanotube arrays for supercapacitor applications. J Mater Chem A 5:172–180

    Google Scholar 

  22. Meng F, Ding Y (2011) Sub-micrometer-thick all-solid-state supercapacitors with high power and energy densities. Adv Mater 23:4098–4102

    CAS  Google Scholar 

  23. Xie X, Zhang C, Wu MB, Tao Y, Lv W, Yang QH (2013) Porous MnO2 for use in a high performance supercapacitor: replication of a 3D graphene network as a reactive template. Chem Commun 49:11092–11094

    CAS  Google Scholar 

  24. Wang H, Yuan X, Zeng G et al (2015) Three dimensional graphene based materials: synthesis and applications from energy storage and conversion to electrochemical sensor and environmental remediation. Cheminform 221:41–59

    CAS  Google Scholar 

  25. Cottineau T, Toupin M, Delahaye T, Brousse T, Bélanger D (2006) Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl Phys A 82:599–606

    CAS  Google Scholar 

  26. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    CAS  Google Scholar 

  27. Hou C, Lang XY, Han GF et al (2013) Integrated solid/nanoporous copper/oxide hybrid bulk electrodes for high-performance lithium-ion batteries. Sci Rep 3:2878

    Google Scholar 

  28. Feng X, Cui H, Li Z, Miao R, Yan N (2017) Scalable synthesis of dual-carbon enhanced silicon-suboxide/silicon composite as anode for lithium ion batteries. NANO 12:1793–7094

    Google Scholar 

  29. Liu S, Feng J, Bian X, Qian Y, Liu J, Xu H (2015) Nanoporous germanium as high-capacity lithium-ion battery anode. Nano Energy 13:651–657

    CAS  Google Scholar 

  30. Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2010) Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta 55:3909–3914

    CAS  Google Scholar 

  31. Kunduraci M (2016) Dealloying technique in the synthesis of lithium-ion battery anode materials. J Solid State Electrochem 20:2105–2111

    CAS  Google Scholar 

  32. Liu W, Chen L, Yan J, Li N, Shi S, Zhang S (2015) Nanoporous copper from dual-phase alloy families and its technology application in lithium ion batteries. Corros Rev 33:203–231

    Google Scholar 

  33. Zhang S, Xing Y, Jiang T et al (2011) A three-dimensional tin-coated nanoporous copper for lithium-ion battery anodes. J Power Sources 196:6915–6919

    CAS  Google Scholar 

  34. Zhou S, Yang X, Lin Y, Xie J, Wang D (2012) A nanonet-enabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime. ACS Nano 6:919–924

    CAS  Google Scholar 

  35. Guan H, Wang X, Li H et al (2012) CoO octahedral nanocages for high-performance lithium ion batteries. Chem Commun 48:4878–4880

    CAS  Google Scholar 

  36. Liu J, Song K, Zhu C et al (2014) Ge/C nanowires as high-capacity and long-life anode materials for Li-ion batteries. ACS Nano 8:7051–7059

    CAS  Google Scholar 

  37. Chan CK, Peng H, Liu G et al (2007) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:187–191

    Google Scholar 

  38. Cui G, Gu L, Zhi L et al (2008) A germanium-carbon nanocomposite material for lithium batteries. Adv Mater 20:3079–3083

    CAS  Google Scholar 

  39. Cui G, Lin G, Kaskhedikar N, Aken PAV, Maier J (2010) A novel germanium/carbon nanotubes nanocomposite for lithium storage material. Electrochim Acta 55:985–988

    CAS  Google Scholar 

  40. Jankiewicz BJ, Jamiola D, Choma J, Jaroniec M (2012) Silica-metal core-shell nanostructures. Adv Colloid Interface Sci 170:28–47

    CAS  Google Scholar 

  41. Seo MH, Park M, Lee KT, Kim K, Kim J, Cho J (2011) High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ Sci 4:425–428

    CAS  Google Scholar 

  42. Liu D, Yang Z, Wang P, Li F, Wang D, He D (2013) Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes. Nanoscale 5:1917–1921

    CAS  Google Scholar 

  43. Wada T, Yamada J, Kato H (2016) Preparation of three-dimensional nanoporous Si using dealloying by metallic melt and application as a lithium-ion rechargeable battery negative electrode. J Power Sources 306:8–16

    CAS  Google Scholar 

  44. Erlebacher J (2009) Hard materials with tunable porosity. MRS Bull 34:561–568

    CAS  Google Scholar 

  45. Wada T, Ichitsubo T, Yubuta K, Segawa H, Yoshida H, Kato H (2014) Bulk-nanoporous-silicon negative electrode with extremely high cyclability for lithium-ion batteries prepared using a top-down process. Nano Lett 14:4505–4510

    CAS  Google Scholar 

  46. Dallas P, Sharma VK, Zboril R (2011) Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interface Sci 166:119–135

    CAS  Google Scholar 

  47. Guo X, Han J, Zhang L et al (2015) Nanoporous metal recuperated MnO2 anode for lithium ion batteries. Nanoscale 7:15111–15116

    CAS  Google Scholar 

  48. Chan CK, Zhang XF, Cui Y (2008) High capacity Li ion battery anodes using Ge nanowires. Nano Lett 8:307–309

    CAS  Google Scholar 

  49. Jayaprakash N, Jones WD, Moganty SS, Archer LA (2012) Composite lithium battery anodes based on carbon@Co3O4 nanostructures: synthesis and characterization. J Power Sources 200:53–58

    CAS  Google Scholar 

  50. Tang Y, Zhang Y, Li W, Ma B, Chen X (2015) Rational material design for ultrafast rechargeable lithium-ion batteries. Chem Soc Rev 44:5926–5940

    CAS  Google Scholar 

  51. Paques JP, van der Linden E, van Rijn CJ, Sagis LM (2014) Preparation methods of alginate nanoparticles. Adv Colloid Interface Sci 209:163–171

    CAS  Google Scholar 

  52. Liu B, Zhang J, Wang X et al (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011

    CAS  Google Scholar 

  53. Luo W, Hu X, Sun Y, Huang Y (2012) Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J Mater Chem 22:8916–8921

    CAS  Google Scholar 

  54. Yang SJ, Nam S, Kim T et al (2013) Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal-organic framework. J Am Chem Soc 135:7394–7397

    CAS  Google Scholar 

  55. Zou F, Hu X, Li Z et al (2014) MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv Mater 26:6622–6628

    CAS  Google Scholar 

  56. Xu C, Sun F, Gao H, Wang J (2013) Nanoporous platinum-cobalt alloy for electrochemical sensing for ethanol, hydrogen peroxide, and glucose. Anal Chim Acta 780:20–27

    CAS  Google Scholar 

  57. Lu LM, Zhang XB, Shen GL, Yu RQ (2012) Seed-mediated synthesis of copper nanoparticles on carbon nanotubes and their application in nonenzymatic glucose biosensors. Anal Chim Acta 715:99–104

    CAS  Google Scholar 

  58. Wierzbicka E, Sulka GD (2016) Nanoporous spongelike Au–Ag films for electrochemical epinephrine sensing. J Electroanal Chem 762:43–50

    CAS  Google Scholar 

  59. Kanwar M, Irvin CB, Frank JJ, Weber K, Rosman H (2010) Confusion about epinephrine dosing leading to iatrogenic overdose: a life-threatening problem with a potential solution. Ann Emerg Med 55:341–344

    Google Scholar 

  60. Solich P, Polydorou CK, Koupparis MA, Efstathiou CE (2000) Automated flow-injection spectrophotometric determination of catecholamines (epinephrine and isoproterenol) in pharmaceutical formulations based on ferrous complex formation. J Pharm Biomed Anal 22:781–789

    CAS  Google Scholar 

  61. Sabbioni C, Saracino MA, Mandrioli R et al (2004) Simultaneous liquid chromatographic analysis of catecholamines and 4-hydroxy-3-methoxyphenylethylene glycol in human plasma: comparison of amperometric and coulometric detection. J Chromatogr A 1032:65–71

    CAS  Google Scholar 

  62. Tang D, Yuan R, Chai Y, An H (2010) Magnetic-core/porous-shell CoFe2O4/SiO2 composite nanoparticles as immobilized affinity supports for clinical immunoassays. Adv Funct Mater 17:976–982

    Google Scholar 

  63. Ramgir NS, Yang Y, Zacharias M (2010) Nanowire-based sensors. Small 6:1705–1722

    CAS  Google Scholar 

  64. Umasankar Y, Chen SM (2008) A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 8:290–313

    Google Scholar 

  65. Meng F, Yan X, Liu J, Gu J, Zou Z (2011) Nanoporous gold as non-enzymatic sensor for hydrogen peroxide. Electrochim Acta 56:4657–4662

    CAS  Google Scholar 

  66. Zhang C, Lai C, Zeng G et al (2016) Nanoporous Au-based chronocoulometric aptasensor for amplified detection of Pb(2 +) using DNAzyme modified with Au nanoparticles. Biosens Bioelectron 81:61–67

    CAS  Google Scholar 

  67. Zhou Y, Tang L, Zeng G et al (2015) A novel biosensor for silver(I) ion detection based on nanoporous gold and duplex-like DNA scaffolds with anionic intercalator. RSC Adv 5:69738–69744

    CAS  Google Scholar 

  68. Rui Q, Komori K, Tian Y, Liu H, Luo Y, Sakai Y (2010) Electrochemical biosensor for the detection of H2O2 from living cancer cells based on ZnO nanosheets. Anal Chim Acta 670:57–62

    CAS  Google Scholar 

  69. Zhang J, Li J, Yang F, Zhang B, Yang X (2010) Pt nanoparticles-assisted electroless deposition of Prussian blue on the electrode: detection of H2O2 with tunable sensitivity. J Electroanal Chem 638:173–177

    CAS  Google Scholar 

  70. Jia LP, Wang HS (2013) Preparation and application of a highly sensitive nonenzymatic ethanol sensor based on nickel nanoparticles/Nafion/graphene composite film. Sens Actuators B Chem 177:1035–1042

    CAS  Google Scholar 

  71. Li C, Su Y, Lv X, Zuo Y, Yang X, Wang Y (2012) Au@Pd core-shell nanoparticles: a highly active electrocatalyst for amperometric gaseous ethanol sensors. Sens Actuators B Chem 171–172:1192–1198

    Google Scholar 

  72. Campanella L, Capesciotti GS (2008) An innovative organic phase enzyme electrode (OPEE) for the determination of ethanol in leadless petrols. Sens Actuators B Chem 147:78–86

    Google Scholar 

  73. Cabaleiro N, de la Calle I, Bendicho C, Lavilla I (2012) Enzymatic single-drop microextraction for the assay of ethanol in alcohol-free cosmetics using microvolume fluorospectrometry detection. Anal Chim Acta 733:28–33

    CAS  Google Scholar 

  74. Liu L, Scholz R, Pippel E, Gösele U (2010) Microstructure, electrocatalytic and sensing properties of nanoporous Pt46Ni54 alloy nanowires fabricated by mild dealloying. J Mater Chem 20:5621–5627

    CAS  Google Scholar 

  75. Xu C, Wang J, Zhou J (2013) Nanoporous PtNi alloy as an electrochemical sensor for ethanol and H2O2. Sens Actuators B Chem 182:408–415

    CAS  Google Scholar 

  76. Gao JJ, Zhou GP, Qiu HJ, Wang Y, Wang JQ (2016) Dealloying monolithic Pt–Cu alloy to wire-like nanoporous structure for electrocatalysis and electrochemical sensing. Corros Sci 108:194–199

    CAS  Google Scholar 

  77. Tarasevich MR, Zhutaeva GV, Bogdanovskaya VA, Radina MV, Ehrenburg MR, Chalykh AE (2007) Oxygen kinetics and mechanism at electrocatalysts on the base of palladium-iron system. Electrochim Acta 52:5108–5118

    CAS  Google Scholar 

  78. Wang J, Wang Z, Zhao D, Xu C (2014) Facile fabrication of nanoporous PdFe alloy for nonenzymatic electrochemical sensing of hydrogen peroxide and glucose. Anal Chim Acta 832:34–43

    CAS  Google Scholar 

  79. Choi Y, Park Y, Kang T, Lee LP (2009) Selective and sensitive detection of metal ions by plasmonic resonance energy transfer-based nanospectroscopy. Nat Nanotechnol 4:742

    CAS  Google Scholar 

  80. Cho ES, Kim J, Tejerina B et al (2012) Ultrasensitive detection of toxic cations through changes in the tunnelling current across films of striped nanoparticles. Nat Mater 11:978–985

    CAS  Google Scholar 

  81. Jensen S, Jernelöv A (1969) Biological methylation of mercury in aquatic organisms. Nature 223:753–754

    CAS  Google Scholar 

  82. Zhang L, Chang H, Hirata A, Wu H, Xue QK, Chen M (2013) Nanoporous gold based optical sensor for sub-ppt detection of mercury ions. ACS Nano 7:4595–4600

    CAS  Google Scholar 

  83. Zeng G, Chen Z, Huang D et al (2016) Practical and regenerable electrochemical aptasensor based on nanoporous gold and thymine-Hg2+ -thymine base pairs for Hg2+ detection. Biosens Bioelectron 90:542–548

    Google Scholar 

  84. Chik H, Xu JM (2004) Nanometric superlattices: non-lithographic fabrication, materials, and prospects. Mater Sci Eng R Rep 43:103–138

    Google Scholar 

  85. Santos A, Kumeria T, Losic D (2013) Nanoporous anodic aluminum oxide for chemical sensing and biosensors. TrAC Trends Anal Chem 44:25–38

    CAS  Google Scholar 

  86. Mutalib MJA, Kempson IM, Losic D, Voelcker NH (2010) Dressing in layers: layering surface functionalities in nanoporous aluminum oxide membranes. Angew Chem 49:7933–7937

    Google Scholar 

  87. Velleman L, Triani G, Evans PJ, Shapter JG, Losic D (2009) Structural and chemical modification of porous alumina membranes. Microporous Mesoporous Mater 126:87–94

    CAS  Google Scholar 

  88. Losic D, Cole MA, Dollmann B, Vasilev K, Griesser HJ (2008) Surface modification of nanoporous alumina membranes by plasma polymerization. Nanotechnology 19:245704

    Google Scholar 

  89. Santos A, Macías G, Ferréborrull J, Pallarès J, Marsal LF (2012) Photoluminescent enzymatic sensor based on nanoporous anodic alumina. ACS Appl Mater Interfaces 4:3584–3588

    CAS  Google Scholar 

  90. Santos A, Balderrama VS, Alba M et al (2012) Nanoporous anodic alumina barcodes: toward smart optical biosensors. Adv Mater 24:1050–1054

    CAS  Google Scholar 

  91. Ab Kadir R (2015) Nanofibers and nanoporous metal oxides for gas sensing applications. RMIT University, Melbourne

    Google Scholar 

  92. Wang LL, Li ZJ, Luo L, Zhao CZ, Kang LP, Liu DW (2016) Methanol sensing properties of honeycomb-like SnO2 grown on silicon nanoporous pillar array. J Alloy Compd 682:170–175

    CAS  Google Scholar 

  93. Yao DD, Rani RA, O’Mullane AP, Kalantarzadeh K, Ou JZ (2014) High performance electrochromic devices based on anodized nanoporous Nb2O5. J Phys Chem C 118:476–481

    CAS  Google Scholar 

  94. Verma A, Singh PK (2013) Sol–gel derived nanostructured niobium pentoxide thin films for electrochromic applications. Indian J Chem 52:593–598

    Google Scholar 

  95. Kadir RA, Rani RA, Alsaif MMYA et al (2015) Optical gas sensing properties of nanoporous Nb2O5 films. ACS Appl Mater Interfaces 7:4751–4758

    Google Scholar 

  96. Wu R, Zhang J, Shi Y, Liu D, Zhang B (2015) Metallic WO2–Carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J Am Chem Soc 137:6983–6986

    CAS  Google Scholar 

  97. Chowdhury S, Balasubramanian R (2014) Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv Colloid Interface Sci 204:35–56

    CAS  Google Scholar 

  98. Lamy C, Lima A, Lerhun V, Delime F, Coutanceau C, Léger JM (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105:283–296

    CAS  Google Scholar 

  99. Rutkowska IA, Koster MD, Blanchard GJ, Kulesza PJ (2014) Nanoporous platinum electrodes as substrates for metal oxide-supported noble metal electrocatalytic nanoparticles: synergistic effects during electrooxidation of ethanol. Aust J Chem 67:1414–1421

    CAS  Google Scholar 

  100. Qiao Y, Li CM (2011) Nanostructured catalysts in fuel cells. J Mater Chem 21:4027–4036

    CAS  Google Scholar 

  101. Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110:3767–3804

    CAS  Google Scholar 

  102. Gong M, Fu G, Chen Y, Tang Y, Lu T (1944) Autocatalysis and selective oxidative etching induced synthesis of platinum-copper bimetallic alloy nanodendrites electrocatalysts. ACS Appl Mater Interfaces 6:7301–7308

    Google Scholar 

  103. Guo S, Sun S (2012) FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. J Am Chem Soc 134:2492–2495

    CAS  Google Scholar 

  104. Kang Y, Pyo JB, Ye X, Gordon TR, Murray CB (2012) Murray, Synthesis, shape control, and methanol electro-oxidation properties of Pt–Zn alloy and Pt3Zn intermetallic nanocrystals. ACS Nano 6:5642–5647

    CAS  Google Scholar 

  105. Xia BY, Wu HB, Wang X, Lou XW (2012) One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J Am Chem Soc 134:13934–13937

    CAS  Google Scholar 

  106. Stamenkovic VR, Ben F, Bongjin Simon M et al (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497

    CAS  Google Scholar 

  107. Chen C et al (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343:1339–1343

    CAS  Google Scholar 

  108. Medinaramos J, Dimeglio JL, Rosenthal J (2014) Efficient reduction of CO2 to CO with high current density using in situ or ex situ prepared Bi-based materials. J Am Chem Soc 136:8361–8367

    CAS  Google Scholar 

  109. Zhang L, Zhu D, Nathanson GM, Hamers RJ (2014) Selective photoelectrochemical reduction of aqueous CO2 to CO by solvated electrons. Angew Chem Int Ed Engl 53:9746–9750

    CAS  Google Scholar 

  110. Mistry H, Reske R, Zeng Z et al (2014) Exceptional size-dependent activity enhancement in the electroreduction of CO2 over Au nanoparticles. J Am Chem Soc 136:16473–16476

    CAS  Google Scholar 

  111. Reske R, Mistry H, Behafarid F, Roldan CB, Strasser P (2014) Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J Am Chem Soc 136:6978–6986

    CAS  Google Scholar 

  112. Asadi M, Kim K, Liu C et al (2016) Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353:467–470

    CAS  Google Scholar 

  113. Zhou H, Wang Y, He R et al (2016) One-step synthesis of self-supported porous NiSe2/Ni hybrid foam: an efficient 3D electrode for hydrogen evolution reaction. Nano Energy 20:29–36

    CAS  Google Scholar 

  114. Yu F, Zhou H, Zhu Z et al (2017) Three-dimensional nanoporous iron nitride film as an efficient electrocatalyst for water oxidation. ACS Catal 7:2052–2057

    CAS  Google Scholar 

  115. Wei C, Wang H, Eid K et al (2017) A three-dimensionally structured electrocatalyst: cobalt-embedded nitrogen-doped carbon nanotubes/nitrogen-doped reduced graphene oxide hybrid for efficient oxygen reduction. Chem Eur J 23:637–643

    CAS  Google Scholar 

  116. Xue H, Jing T, Hao G et al (2016) Fabrication of PdCo bimetallic nanoparticles anchored on three-dimensional ordered N-doped porous carbon as an efficient catalyst for oxygen reduction reaction. ACS Appl Mater Interfaces 8:20766–20771

    CAS  Google Scholar 

  117. Lei H, Sun W, Sun Z (2017) Amorphous Co3O4-decorated Pd as an efficient electrocatalyst for methanol oxidation. NANO 12:1750078–1750086

    CAS  Google Scholar 

  118. Mohammadi MR, Fray DJ (2010) Nanostructured TiO2–CeO2 mixed oxides by an aqueous sol–gel process: effect of Ce: Ti molar ratio on physical and sensing properties. Sens Actuators B Chem 150:631–640

    CAS  Google Scholar 

  119. Biener MM, Biener J, Wichmann A et al (2011) ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity. Nano Lett 11:3085–3090

    CAS  Google Scholar 

  120. Chen AY, Wang JW, Wang Y et al (2015) Effects of pore size and residual Ag on electrocatalytic properties of nanoporous gold films prepared by pulse electrochemical dealloying. Electrochim Acta 153:552–558

    CAS  Google Scholar 

  121. Xu C, Xu X, Su J, Ding Y (2007) Research on unsupported nanoporous gold catalyst for CO oxidation. J Catal 252:243–248

    CAS  Google Scholar 

  122. Zhang J, Liu P, Houyi Ma A, Ding Y (2007) Nanostructured porous gold for methanol electro-oxidation. J Phys Chem C 111:10382–10388

    CAS  Google Scholar 

  123. Xiao X, Ulstrup J, Li H, Wang ME, Zhang J, Si P (2014) Nanoporous gold assembly of glucose oxidase for electrochemical biosensing. Electrochim Acta 130:559–567

    CAS  Google Scholar 

  124. Biener MM, Ye J, Baumann TF et al (2014) Ultra-strong and low-density nanotubular bulk materials with tunable feature sizes. Adv Mater 26:4808–4813

    CAS  Google Scholar 

  125. Lang XY, Fu HY, Hou C et al (2013) Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat Commun 4:2169

    Google Scholar 

  126. Jia C, Yin H, Ma H et al (2009) Enhanced photoelectrocatalytic activity of methanol oxidation on TiO2-decorated nanoporous gold. J Phys Chem C 113:16138–16143

    CAS  Google Scholar 

  127. Chen AY, Shi SS, Wang JW et al (2015) Microstructure and electrocatalytic performance of nanoporous gold foils decorated by TiO2 coatings. Surf Coat Technol 286:113–118

    Google Scholar 

  128. Kang BK, Woo MH, Lee J et al (2017) Mesoporous Ni–Fe oxide multi-composite hollow nanocage for efficient electrocatalytic water oxidation reactions. J Mater Chem A 5:4320–4324

    CAS  Google Scholar 

  129. Yin H, Tang Z (2016) Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage. Chem Soc Rev 45:4873

    CAS  Google Scholar 

  130. Lang X, Chen X, Zhao J (2014) Heterogeneous visible light photocatalysis for selective organic transformations. Chem Soc Rev 43:473–486

    CAS  Google Scholar 

  131. Xu W, Zhu S, Liang Y et al (2015) Nanoporous CuS with excellent photocatalytic property. Sci Rep 5:18125

    CAS  Google Scholar 

  132. Gunjakar JL, Kim TW, Kim HN, Kim IY, Hwang SJ (2011) Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability. J Am Chem Soc 133:14998–15007

    CAS  Google Scholar 

  133. Kominami H, Yabutani K, Yamamoto T, Kera Y, Ohtani B (2001) Synthesis of highly active tungsten(VI) oxide photocatalysts for oxygen evolution by hydrothermal treatment of aqueous tungstic acid solutions. J Mater Chem 11:3222–3227

    CAS  Google Scholar 

  134. He W, Jia H, Li X et al (2012) Understanding the formation of CuS concave superstructures with peroxidase-like activity. Nanoscale 4:3501–3506

    CAS  Google Scholar 

  135. Tanveer M, Cao C, Ali Z et al (2014) Template free synthesis of CuS nanosheet-based hierarchical microspheres: an efficient natural light driven photocatalyst. CrystEngComm 16:5290–5300

    CAS  Google Scholar 

  136. Zhuang TT, Fan FJ, Gong M, Yu SH (2012) Cu(1.94)S nanocrystal seed mediated solution-phase growth of unique Cu2S–PbS heteronanostructures. Chem Commun 48:9762–9764

    CAS  Google Scholar 

  137. Freymeyer NJ, Cunningham PD, Jones EC, Golden BJ, Wiltrout AM, Plass KE (2013) Influence of solvent reducing ability on copper sulfide crystal phase. Cryst Growth Des 13:4059–4065

    CAS  Google Scholar 

  138. Wei T, Liu Y, Dong W et al (2013) Surface-dependent localized surface plasmon resonances in CuS nanodisks. Appl Mater Interfaces 5:10473–10477

    CAS  Google Scholar 

  139. Yu Y, Zhang J, Wu X, Zhao W, Zhang B (2012) Nanoporous single-crystal-like Cd(x)Zn(1−x)S nanosheets fabricated by the cation-exchange reaction of inorganic-organic hybrid ZnS-amine with cadmium ions. Angew Chem Int Ed 51:897–900

    CAS  Google Scholar 

  140. Wang Y, Zhao H, Li M, Fan J, Zhao G (2014) Magnetic ordered mesoporous copper ferrite as a heterogeneous Fenton catalyst for the degradation of imidacloprid. Appl Catal B 147:534–545

    CAS  Google Scholar 

  141. Mi L, Wei W, Zheng Z et al (2013) Tunable properties induced by ion exchange in multilayer intertwined CuS microflowers with hierarchal structures. Nanoscale 5:6589–6598

    CAS  Google Scholar 

  142. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    CAS  Google Scholar 

  143. Lee K, Mazare A, Schmuki P (2014) One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev 114:9385–9454

    CAS  Google Scholar 

  144. Wang X, Li Z, Shi J, Yu Y (2014) One-dimensional titanium dioxide nanomaterials: nanowires, nanorods, and nanobelts. Chem Rev 114:9346

    CAS  Google Scholar 

  145. Liu N, Schneider C, Freitag D et al (2014) Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. Nano Lett 14:3309–3313

    CAS  Google Scholar 

  146. Nguyen NT, Yoo J, Altomare M, Schmuki P (2016) Suspended Pt nanoparticles over TiO2 nanotubes for enhanced photocatalytic H2 evolution. Chem Commun 50:9653–9656

    Google Scholar 

  147. Su R, Tiruvalam R, Logsdail AJ et al (2014) Designer titania-supported Au–Pd nanoparticles for efficient photocatalytic hydrogen production. ACS Nano 8:3490–3497

    CAS  Google Scholar 

  148. Yoo JE, Lee K, Altomare M, Selli E, Schmuki P (2013) Self-organized arrays of single-metal catalyst particles in TiO2 cavities: a highly efficient photocatalytic system. Angew Chem Int Ed 52:7514–7517

    CAS  Google Scholar 

  149. Nguyen NT, Altomare M, Yoo J, Schmuki P (2015) Efficient photocatalytic h2 evolution: controlled dewetting-dealloying to fabricate site-selective high-activity nanoporous au particles on highly ordered TiO2 nanotube arrays. Adv Mater 27:3208–3215

    CAS  Google Scholar 

  150. Miyamura H, Matsubara R, Miyazaki Y, Kobayashi S (2007) Innentitelbild: aerobic oxidation of alcohols at room temperature and atmospheric conditions catalyzed by Reusable Gold nanoclusters stabilized by the benzene rings of polystyrene derivatives (Angew. Chem. 22/2007). Angew Chem 22:4066

    Google Scholar 

  151. Qamar M, Elsayed RB et al (2014) Highly efficient and selective oxidation of aromatic alcohols photocatalyzed by nanoporous hierarchical Pt/Bi2WO6 in organic solvent-free environment. ACS Appl Mater Interfaces 7:1257–1269

    Google Scholar 

  152. Deng Q, Duan X, Ng DHL et al (2012) Ag nanoparticle decorated nanoporous ZnO microrods and their enhanced photocatalytic activities. ACS Appl Mater Interfaces 4:6030–6037

    CAS  Google Scholar 

Download references

Acknowledgement

The study was financially supported by the National Natural Science Foundation of China (Grant No. 51709103), Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ3242), China Postdoctoral Science Foundation (Grant No. 2018M630901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaoyu Zhou or Jian Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, A., He, Y., Zhou, Y. et al. A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. J Mater Sci 54, 949–973 (2019). https://doi.org/10.1007/s10853-018-2961-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2961-5

Keywords

Navigation