Skip to main content
Log in

Nitrogen-doped graphene-supported molybdenum dioxide electrocatalysts for oxygen reduction reaction

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A simple one-step pyrolysis strategy has been developed to prepare molybdenum dioxide supported on nitrogen-doped graphene (MoO2/NG) as electrocatalyst for oxygen reduction reactions (ORR). Homogeneous anchoring of MoO2 nanoparticles on nitrogen-doped graphene was achieved for the composite synthesized at 500 °C (MoO2/NG-500). For the first time, the MoO2/NG composite manifests considerable electrocatalytic activity for ORR in alkaline solution, with the onset potential of 0.91 V and the peak potential of 0.73 V. Furthermore, the MoO2/NG catalyst outperforms commercial Pt/C catalyst in terms of the electrochemical durability for ORR. The facile fabrication, reasonable ORR activity and excellent stability endow our MoO2/NG catalyst with great promise in application of cost-effective fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wang S, Jiang SP (2017) Prospects of fuel cell technologies. Natl Sci Rev 2:163–166

    Google Scholar 

  2. Cao R, Lee JS, Liu M, Cho J (2012) Recent progress in non-precious catalysts for metal–air batteries. Adv Energy Mater 2(7):816–829

    Article  Google Scholar 

  3. Hardin WG, Slanac DA, Wang X, Dai S, Johnston KP, Stevenson KJ (2013) Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal–air battery electrodes. J Phys Chem Lett 4(8):1254–1259

    Article  Google Scholar 

  4. Li J, Tang H, Chen L, Chen R, Pan M, Jiang SP (2013) Highly ordered and periodic mesoporous nafion membranes via colloidal silica mediated self-assembly for fuel cells. Chem Commun 49:6537

    Article  Google Scholar 

  5. Bartak DE, Kazee B, Shimazu K, Kuwana T (1986) Electrodeposition and characterization of platinum microparticles in poly(4-vinylpyridine) film electrodes. Anal Chem 58(13):2756–2761

    Article  Google Scholar 

  6. Uhm S, Jeong B, Lee J (2011) A facile route for preparation of non-noble CNF cathode catalysts in alkaline ethanol fuel cells. Electrochim Acta 56(25):9186–9190

    Article  Google Scholar 

  7. Yang L, Jiang S, Zhao Y, Zhu L, Chen S, Wang X, Wu Q, Ma J, Ma Y, Hu Z (2011) Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew Chem 50(31):7132–7135

    Article  Google Scholar 

  8. Ranjbar SN, Paraknowitsch JP, Goebel C, Thomas A, Strasser P (2014) Noble metal-free electrocatalysts with enhanced ORR performance by task specific functionalization of activated carbon using ionic liquid precursor systems. J Am Chem Soc 136(41):14486

    Article  Google Scholar 

  9. Zhu YP, Guo C, Zheng Y, Qiao SZ (2017) Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc Chem Res 50(4):915–923

    Article  Google Scholar 

  10. Yan D, Li Y, Huo J, Chen R, Dai L, Wang S (2017) Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv Mater. https://doi.org/10.1002/adma.201606459

    Google Scholar 

  11. Xu Z, Zheng QS, Chen GH (2007) Elementary building blocks of graphene-nanoribbon-based electronic devices. Appl Phys Lett 90(22):223115–223115-3

    Google Scholar 

  12. Borini S, White R, Wei D, Astley M, Haque S, Spigone E, Harris N, Kivioja J, Ryhänen T (2013) Ultrafast graphene oxide humidity sensors. ACS Nano 7(12):11166–11173

    Article  Google Scholar 

  13. Zhang LL, Zhao X, Stoller MD, Zhu Y, Ji H, Murali S, Wu Y, Perales S, Clevenger B, Ruoff RS (2012) Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett 12(4):1806

    Article  Google Scholar 

  14. Yoo E, Kim J, Hosono E, Zhou HS, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8(8):2277

    Article  Google Scholar 

  15. Qu L, Liu Y, Baek JB, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321

    Article  Google Scholar 

  16. Xiong B, Zhou Y, Zhao Y, Wang J, Chen X, O’Hayre R, Shao Z (2013) The use of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for methanol electrocatalytic oxidation. Carbon 52(2):181–192

    Article  Google Scholar 

  17. Vinayan BP, Nagar R, Rajalakshmi N, Ramaprabhu S (2012) Novel platinum–cobalt alloy nanoparticles dispersed on nitrogen-doped graphene as a cathode electrocatalyst for PEMFC applications. Adv Funct Mater 22(16):3519–3526

    Article  Google Scholar 

  18. Li J, Wang N, Zhao Y, Ding Y, Guan L (2011) MnO2 nanoflakes coated on multi-walled carbon nanotubes for rechargeable lithium-air batteries. Electrochem Commun 13(7):698–700

    Article  Google Scholar 

  19. Cao Y, Wei Z, He J, Zang J, Zhang Q, Zheng M, Dong Q (2012) α-MnO2 nanorods grown in situ on graphene as catalysts for Li–O2 batteries with excellent electrochemical performance. Energy Environ Sci 5(12):9765–9768

    Article  Google Scholar 

  20. Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T, Dai H (2011) Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater 10(10):780–786

    Article  Google Scholar 

  21. Xu J, Gao P, Zhao TS (2012) Non-precious Co3O4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells. Energy Environ Sci 5(1):5333–5339

    Article  Google Scholar 

  22. Liang Y, Wang H, Zhou J, Li Y, Wang J, Regier T, Dai H (2012) Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J Am Chem Soc 134(7):3517–3523

    Article  Google Scholar 

  23. Higgins D, Hassan FM, Min HS, Choi JY, Hoque MA, Dong UL, Chen Z (2015) Shape-controlled octahedral cobalt disulfide nanoparticles supported on nitrogen and sulfur-doped graphene/carbon nanotube composites for oxygen reduction in acidic electrolyte. J Mater Chem A 3(12):6340–6350

    Article  Google Scholar 

  24. Chen B, Li R, Ma G, Gou X, Zhu Y, Xia Y (2015) Cobalt sulfide/N, S codoped porous carbon core–shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions. Nanoscale 7(48):20674

    Article  Google Scholar 

  25. Liu Y, Zhao B, Zhang Y, Zhang H, Zhan K, Yang J, Li J (2016) Co-supported catalysts on nitrogen and sulfur co-doped vertically-aligned carbon nanotubes for oxygen reduction reaction. RSC Adv 6(39):32676–32684

    Article  Google Scholar 

  26. Sun Y, Hu X, Luo W, Huang Y (2011) Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. ACS Nano 5(9):7100–7107

    Article  Google Scholar 

  27. Tan X, Cui C, Wu S, Qiu B, Wang L, Zhang J (2017) Nitrogen-doped mesoporous carbon encapsulated MoO2 nanobelts as a high capacity and stable host for lithium-ion storage. Chem-Asian J 12(1):36

    Article  Google Scholar 

  28. Li X, Jiang Y, Jia L, Wang C (2016) MoO2 nanoparticles on reduced graphene oxide/polyimide-carbon nanotube film as efficient hydrogen evolution electrocatalyst. J Power Sources 304:146–154

    Article  Google Scholar 

  29. Jin Y, Wang H, Li J, Yue X, Han Y, Shen PK, Cui Y (2016) Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting. Adv Mater 28(19):3785

    Article  Google Scholar 

  30. Wu L, Wang X, Sun Y, Liu Y, Li J (2015) Flawed MoO2 belts transformed from MoO3 on a graphene template for the hydrogen evolution reaction. Nanoscale 7(16):7040–7044

    Article  Google Scholar 

  31. Yan Z, Xie J, Jing J, Zhang M, Wei W, Yin S (2012) MoO2 nanocrystals down to 5 nm as Pt electrocatalyst promoter for stable oxygen reduction reaction. Int J Hydrog Energy 37(21):15948–15955

    Article  Google Scholar 

  32. Elezović NR, Babić BM, Radmilović VR, Gojković SL, Krstajić NV, Vračar LM (2008) Pt/C doped by MoOx as the electrocatalyst for oxygen reduction and methanol oxidation. J Power Sources 175(1):250–255

    Article  Google Scholar 

  33. Niu W, Li L, Liu X, Wang N, Liu J, Zhou W, Tang Z, Chen S (2015) Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: an efficient electrocatalyst for oxygen reduction reaction. J Am Chem Soc 137(16):5555–5562

    Article  Google Scholar 

  34. Yang S, Song X, Zhang P, Gao L (2015) Heating-rate-induced porous α-Fe2O3 with controllable pore size and crystallinity grown on graphene for supercapacitors. ACS Appl Mater Interfaces 7(1):75–79

    Article  Google Scholar 

  35. Zhou W, Hou D, Sang Y, Yao S, Zhou J, Li G, Li L, Liu H, Chen S (2014) MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction. J Mater Chem A 2(29):11358–11364

    Article  Google Scholar 

  36. Zhao C, Yu C, Zhang M, Huang H, Li S, Han X, Liu Z, Yang J, Xiao W, Liang J (2017) Ultrafine MoO2-carbon microstructures enable ultralong-Life power-type sodium ion storage by enhanced pseudocapacitance. Adv Energy Mater. https://doi.org/10.1002/aenm.201602880

    Google Scholar 

  37. Hu K, Tao L, Liu D, Huo J, Wang S (2016) Sulfur-doped Fe/N/C nanosheets as highly-efficient electrocatalysts for oxygen reduction reaction. ACS Appl Mater Interfaces 8(30):19379

    Article  Google Scholar 

  38. Arrigo R, Hävecker M, Schlögl R, Su DS (2008) Dynamic surface rearrangement and thermal stability of nitrogen functional groups on carbon nanotubes. Chem Commun 40(40):4891

    Article  Google Scholar 

  39. Sharifi T, Hu G, Jia X, Wågberg T (2012) Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes. ACS Nano 6(10):8904–8912

    Article  Google Scholar 

  40. Chandrasekaran S, Kim EJ, Jin SC, Bowen CR, Rajagopalan B, Adamaki V, Misra RDK, Hur SH (2016) High performance bifunctional electrocatalytic activity of a reduced graphene oxide–molybdenum oxide hybrid catalyst. J Mater Chem A 4(34):13271

    Article  Google Scholar 

  41. Xia X, Wang Y, Wang D, Zhang Y, Fan Z, Tu J, Zhang H, Fan HJ (2016) Atomic-layer-deposited iron oxide on arrays of metal/carbon spheres and their application for electrocatalysis. Nano Energy 20:244–253

    Article  Google Scholar 

  42. Yang L, Yu J, Wei Z, Li G, Cao L, Zhou W, Chen S (2017) Co–N-doped MoO2 nanowires as efficient electrocatalysts for the oxygen reduction reaction and hydrogen evolution reaction. Nano Energy 41:772–779

    Article  Google Scholar 

  43. Mao S, Wen Z, Huang T, Hou Y, Chen J (2014) High-performance bi-functional electrocatalysts of 3D crumpled graphene–cobalt oxide nanohybrids for oxygen reduction and evolution reactions. Energy Environ Sci 7(2):609–616

    Article  Google Scholar 

  44. Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J (2016) Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science (New York, NY) 351(6271):361

    Article  Google Scholar 

  45. Wu ZS, Yang S, Sun Y, Parvez K, Feng X, Mullen K (2012) 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction. J Am Chem Soc 134(22):9082–9085

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51605293, 51702213), Natural Science Foundation of Shanghai (16ZR1423500), Shanghai Pujiang Program (17PJ1406900) and The Program for Associate Professor of Special Appointment (Young Eastern Scholar) at Shanghai Institutions of Higher Learning (QD2016013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Zhao or Jianqiang Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 13682 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Yin, X., Yan, Y. et al. Nitrogen-doped graphene-supported molybdenum dioxide electrocatalysts for oxygen reduction reaction. J Mater Sci 53, 6124–6134 (2018). https://doi.org/10.1007/s10853-017-1972-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1972-y

Keywords

Navigation