Skip to main content
Log in

A hybrid gas-sensing material based on porous carbon fibers and a TiO2 photocatalyst

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrode material for a gas sensor was prepared from electrospun carbon fibers. The electrode material was chemically activated to enlarge the gas adsorption sites, and carbon nanotubes (CNTs) were embedded into the polyacrylonitrile-based carbon fibers to enhance their electrical conductivity. TiO2 was used as an additive to promote NO gas degradation and to improve their response in NO gas sensing. The chemical activation process increased the specific surface area and pore volume of the carbon fibers to values in excess of 2000 m2/g and 1.0 ml/g, respectively. To investigate the photocatalytic effects of the TiO2 additive, NO gas sensing was conducted in the presence and absence of ultraviolet irradiation. The subsequent results indicate that the response of the sensor was improved due to the TiO2-photocatalyzed decomposition of NO gas and the subsequent adsorption of HNO2, NO2, and HNO3. The electrical resistance of the sensor was significantly reduced during NO gas sensing due to the electron hopping effect, and highly efficient gas adsorption was observed. In conclusion, a sensitive gas sensor electrode was realized by fabricating a porous material to increase the efficiency of gas adsorption, adding CNTs to improve its electrical conductivity and adding TiO2 photocatalysts to promote NO decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen L, Tsang SC (2003) Sens Actuator B 89:68

    Article  CAS  Google Scholar 

  2. Salehi A, Kalantari DJ (2007) Sens Actuator B 122:69

    Article  CAS  Google Scholar 

  3. Comini E (2006) Anal Chim Acta 568:28

    Article  CAS  Google Scholar 

  4. Ali M, Wang ChY, Röhlig C-C, Cimalla V, Stauden Th, Ambacher O (2008) Sens Actuator B 129:467

    Article  CAS  Google Scholar 

  5. Jang WK, Yun J, Kim HI, Lee YS (2011) Carbon Lett 12:162

    Article  Google Scholar 

  6. Hoa ND, Quy NV, Cho Y, Kim D (2009) Sens Actuator B 135:656

    Article  CAS  Google Scholar 

  7. Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Nano Lett 3:929

    Article  CAS  Google Scholar 

  8. Mäklin J, Mustonen T, Kordás K, Saukko S, Tóth G, Vähäkangas J (2007) Phys Status Solidi B 244:4298

    Article  Google Scholar 

  9. Ueda T, Bhuiyan MMH, Norimatsu H, Katsuki S, Ikegami T, Mitsugi F (2008) Physica E 40:2272

    Article  CAS  Google Scholar 

  10. Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C 1:1

    Article  CAS  Google Scholar 

  11. Lee SH, Kang M, Cho SM, Han GY, Kim BW, Yoon KJ, Chung CH (2001) J Photochem Photobiol A 146:121

    Article  CAS  Google Scholar 

  12. Chien SH, Kuo MC, Lu CH, Lu KN (2004) Catal Today 97:121

    Article  CAS  Google Scholar 

  13. Wu Z, Sheng Z, Wang H, Liu Y (2009) Chemosphere 77:264

    Article  CAS  Google Scholar 

  14. Ueda T, Takahashi K, Mitsugi F, Ikegami T (2009) Diam Relat Mater 18:493

    Article  CAS  Google Scholar 

  15. Bai BC, Kim JG, Im JS, Jung SC, Lee YS (2011) Carbon Lett 12:236

    Article  Google Scholar 

  16. Kang SC, Im JS, Lee YS (2011) Carbon Lett 12:21

    Article  Google Scholar 

  17. Kim Y, Cho S, Lee S, Lee YS (2012) Carbon Lett 13:254

    Article  Google Scholar 

  18. Bai BC, Kim JG, Naik M, Im JS, Lee YS (2011) Carbon Lett 12:171

    Article  Google Scholar 

  19. Kim BH, Yang KS (2013) Electrochim Acta 88:597

    Article  CAS  Google Scholar 

  20. Kim SY, Kim BH, Yang KS, Oshida K (2012) Mater Lett 87:157

    Article  CAS  Google Scholar 

  21. Fathy NA, Girgis BS, Khalil LB, Farah JY (2010) Carbon Lett 11:224

    Article  Google Scholar 

  22. Jang WK, Yun J, Kim HI, Lee YS (2012) Carbon Lett 13:88

    Article  Google Scholar 

  23. Cho SY, Lee KW, Kim JW, Kim DH (2013) Sens Actuator B 183:428

    Article  CAS  Google Scholar 

  24. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309

    Article  CAS  Google Scholar 

  25. Horikawa T, Do DD, Nicholson D (2011) Adv Colloid Interface Sci 169:40

    Article  CAS  Google Scholar 

  26. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, London, p 159

    Google Scholar 

  27. Kaneko K (1994) J Membr Sci 96:59

    Article  CAS  Google Scholar 

  28. Lillo-Ródenas MA, Juan-Juan J, Cazorla-Amorós D, Linares-Solano A (2004) Carbon 42:1371

    Article  Google Scholar 

  29. Lillo-Ródenas MA, Cazorla-Amorós D, Linares-Solano A (2003) Carbon 41:267

    Article  Google Scholar 

  30. Król M, Gryglewicz G, Machnikowski J (2011) Fuel Process Technol 92:158

    Article  Google Scholar 

  31. Raymundo-Piñero E, Azaïs P, Cacciaguerra T, Cazorla-Amorós D, Linares-Solano A, Béguin F (2005) Carbon 43:786

    Article  Google Scholar 

  32. McKee DW (1982) Carbon 20:59

    Article  CAS  Google Scholar 

  33. Kapteijn F, Abbel G, Moulijn JA (1984) Fuel 63:1036

    Article  CAS  Google Scholar 

  34. Alcañiz-Monge J, Bueno-López A, Lillo-Rodenas MÁ, Illán-Gómez MJ (2008) Microporous Mesoporous Mater 108:294

    Article  Google Scholar 

  35. Zhang WJ, Rabiei S, Bagreev A, Zhuang MS, Rasouli F (2008) Appl Catal B 83:63

    Article  CAS  Google Scholar 

  36. Katzman HA, Adams PM, Le TD, Hemminger CS (1994) Carbon 32:379

    Article  CAS  Google Scholar 

  37. Jibril BY, Atta AY (2011) Int J Hydrogen Energy 36:5951

    Article  CAS  Google Scholar 

  38. Pang H, Wang X, Zhang G, Chen H, Lv G, Yang S (2010) Appl Surf Sci 256:6403

    Article  CAS  Google Scholar 

  39. Yin B, Wang J, Xu W, Long D, Qiao W, Ling L (2013) N Carbon Mater 28:47

    Article  CAS  Google Scholar 

  40. Jeon S, Yun J, Lee YS, Kim HI (2010) Carbon Lett 11:117

    Article  Google Scholar 

  41. Wilson D, Wang W, Lopes RJG (2012) Appl Catal B 123:273

    Google Scholar 

  42. Penza M, Rossi R, Alvisi M, Cassano G, Signore MA, Serra E, Giorgi R (2008) Sens Actuator B 135:289

    Article  CAS  Google Scholar 

  43. Nguyen HQ, Huh JS (2006) Sens Actuator B 117:426

    Article  CAS  Google Scholar 

  44. Kang SC, Im JS, Lee YS (2011) Appl Chem Eng 22:243

    CAS  Google Scholar 

  45. Wu Z, Sheng Z, Liu Y, Wang H, Tang N, Wang J (2009) J Hazard Mater 164:542

    Article  CAS  Google Scholar 

  46. Wu JCS, Cheng YT (2006) J Catal 237:393

    Article  CAS  Google Scholar 

  47. Devahasdin S, Fan C Jr, Li K, Chen DH (2003) J Photochem Photobiol A 156:161

    Article  CAS  Google Scholar 

  48. Wang H, Wu Z, Zhao W, Guan B (2007) Chemosphere 66:185

    Article  CAS  Google Scholar 

  49. Dhand V, Prasad JS, Rhee KY, Anjaneyulu Y (2013) J Ind Eng Chem 19:944

    Article  CAS  Google Scholar 

  50. Ulbricht H, Zacharia R, Cindir N, Hertel T (2006) Carbon 44:2931

    Article  CAS  Google Scholar 

  51. Kobayashi N, Enoki T, Ishii C, Kaneko K, Endo M (1998) J Chem Phys 109:1983

    Article  CAS  Google Scholar 

  52. Chiu HS, Lin PI, Wu HC, Hsieh WH, Chen CD, Chen YT (2009) Carbon 47:1761

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Il Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 466 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yun, J., Kim, HI. & Lee, YS. A hybrid gas-sensing material based on porous carbon fibers and a TiO2 photocatalyst. J Mater Sci 48, 8320–8328 (2013). https://doi.org/10.1007/s10853-013-7645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7645-6

Keywords

Navigation