Skip to main content
Log in

Influence of martensite morphology on the work-hardening behavior of high strength ferrite–martensite dual-phase steel

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study concerns influence of martensite morphology on the work-hardening behavior of high-strength ferrite–martensite dual-phase (DP) steel. A low-carbon microalloyed steel was subjected to intermediate quenching (IQ), step quenching (SQ), and intercritical annealing (IA) to develop different martensite morphologies, i.e., fine and fibrous, blocky and banded, and island types, respectively. Analyses of work-hardening behavior of the DP microstructures by differential Crussard–Jaoul technique have demonstrated three stages of work-hardening for IQ and IA samples, whereas the SQ sample revealed only two stages. Similar analyses by modified Crussard–Jaoul technique showed only two stages of work-hardening for all the samples. Among different treatments, IQ route has yielded the best combination of strength and ductility due to its superior work-hardening behavior. The influence of martensite morphology on nucleation and growth of microvoids/microcracks has been correlated with the observed tensile ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Piplani RK, Raghavan V (1981) Steel India 4:1

    Google Scholar 

  2. Speich GR (1981) In: Kot RA, Bramfitt BL (eds) Fundamentals of dual phase steels. AIME, New York, p 1

    Google Scholar 

  3. Jiang Z, Lian J, Guan Z (1995) Mater Sci Eng A190:55

    Article  CAS  Google Scholar 

  4. Davies RG (1979) Metall Trans A 10:113

    Article  Google Scholar 

  5. Bag A, Ray KK, Dwarakadasa ES (1999) Metall Trans A 30:1193

    Article  Google Scholar 

  6. Byun TS, Kim IS (1993) J Mater Sci 28:2923. doi:https://doi.org/10.1007/BF00354695

    Article  CAS  Google Scholar 

  7. Koo JY, Young MJ, Thomos G (1980) Metall Trans A 11:852

    Article  Google Scholar 

  8. Tomita Y (1990) J Mater Sci 25:5179. doi:https://doi.org/10.1007/BF00580148

    Article  CAS  Google Scholar 

  9. Sankar S, Sangal S, Padmanabhan KA (2005) Mater Sci Technol 21:1152

    Article  Google Scholar 

  10. Erdogan M (2002) J Mater Sci 37:3623. doi:https://doi.org/10.1023/A:1016548922555

    Article  CAS  Google Scholar 

  11. Hollomon JH (1945) Trans AIME 162:268

    Google Scholar 

  12. Crussard C (1953) Rev Metall 10:697

    Article  Google Scholar 

  13. Jaoul B (1957) J Mech Phys Solids 5:95

    Article  Google Scholar 

  14. Monteiro SN, Reed-Hill RE (1971) Met Trans 2:2947

    Article  CAS  Google Scholar 

  15. Mamos LF, Matlock DK, Krauss G (1979) Metall Trans A 10:259

    Article  Google Scholar 

  16. Samuel FH (1987) Mater Sci Eng 92:L1

    Article  CAS  Google Scholar 

  17. Jha BK, Avtar R, Dwivedi VS, Ramaswamy V (1987) J Mater Sci Lett 6:891

    Article  CAS  Google Scholar 

  18. Jiang Z, Jian L, Chen J (1992) Mater Sci Tech 8:1075

    Article  CAS  Google Scholar 

  19. Ludwik P (1909) Element der Technolnischen Mechanick. Springer, Berlin, p 32

    Book  Google Scholar 

  20. Swift HW (1952) J Mech Phys Solids 1:1

    Article  Google Scholar 

  21. Kang S, Kwon H (1987) Metall Trans A 18:1587

    Article  Google Scholar 

  22. Das P, Chattopadhyay PP, Bandyopadhyay NR (2003) J Met Mater Eng 84:84

    CAS  Google Scholar 

  23. Gural A, Tekeli S, Ando T (2006) J Mater Sci 41:7894. doi:https://doi.org/10.1007/s10853-006-0871-4

    Article  Google Scholar 

  24. Chunling Z, Dayong C, Bo L, Tianchen Z, Yunchang F (2004) J Mater Sci 39:4393. doi:https://doi.org/10.1023/B:JMSC.0000033436.06575.aa

    Article  Google Scholar 

  25. Soto R, Saikaly W, Bano X, Issartel C, Rigaut G, Charai A (1999) Acta Mater 47:3475

    Article  CAS  Google Scholar 

  26. Wang ZG, Al SH (1999) ISIJ Int 39:747

    Article  CAS  Google Scholar 

  27. Kim NJ, Thomas G (1981) Metall Trans A 12:483

    Article  CAS  Google Scholar 

  28. Bayram A, Uguz A, Murat U (1999) Mater Charact 43:259

    Article  CAS  Google Scholar 

  29. Umemoto M, Tsuchiya K, Liu ZG, Sugimoto S (2000) Metall Trans A 31:1785

    Article  Google Scholar 

  30. Tomita Y, Okabayashi K (1985) Metall Trans A 16:73

    Article  Google Scholar 

  31. Sarwar M, Priestner R (1996) J Mater Sci 31:2091. doi:https://doi.org/10.1007/BF00356631

    Article  CAS  Google Scholar 

  32. Nam WJ, Bae CM (1999) J Mater Sci 34:5661. doi:https://doi.org/10.1023/A:1004705705208

    Article  CAS  Google Scholar 

  33. Ahmad E, Sarwar M, Manzoor T, Hussain N (2006) J Mater Sci 41:5417. doi:https://doi.org/10.1007/s10853-006-0266-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debdulal Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, D., Chattopadhyay, P.P. Influence of martensite morphology on the work-hardening behavior of high strength ferrite–martensite dual-phase steel. J Mater Sci 44, 2957–2965 (2009). https://doi.org/10.1007/s10853-009-3392-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-009-3392-0

Keywords

Navigation