Skip to main content
Log in

Grain boundary sliding revisited: Developments in sliding over four decades

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is now recognized that grain boundary sliding (GBS) is often an important mode of deformation in polycrystalline materials. This paper reviews the developments in GBS over the last four decades including the procedures available for estimating the strain contributed by sliding to the total strain, ξ, and the division into Rachinger GBS in conventional creep and Lifshitz GBS in diffusion creep. It is shown that Rachinger GBS occurs under two distinct conditions in conventional creep depending upon whether the grain size, d, is larger or smaller than the equilibrium subgrain size, λ. A unified model is presented leading to separate rate equations for Rachinger GBS in power-law creep and superplasticity. It is demonstrated that these two equations are in excellent agreement with experimental observations. There are additional recent predictions, not fully resolved at the present time, concerning the role of GBS in nanostructured materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. PHILLIPS, Proc. Roy. Soc. London 19 (1903–1905) 491.

    Article  Google Scholar 

  2. E. N. DAC ANDRADE, Proc. R. Soc. A 84 (1910) 1.

    CAS  Google Scholar 

  3. Idem., ibid. 90 (1914) 329.

  4. F. R. N. Nabarro, in “Report of a Conference on Strength of Solids,” The Physical Society, London, U.K. (1948) p. 75.

  5. C. HERRING, J. Appl. Phys. 21 (1950) 437.

    Article  Google Scholar 

  6. R. L. COBLE, ibid. 34 (1963) 1679.

    Google Scholar 

  7. O. A. RUANO, J. WADSWORTH, J. WOLFENSTINE and O. D. SHERBY, Mater. Sci. Eng. A 165 (1993) 133.

    Article  Google Scholar 

  8. J. WADSWORTH, O. A. RUANO, O. D. SHERBY, in “Creep Behavior of Advanced Materials for the 21st Century,” edited by R. S. Mishra, A. K. Mukherjee and K. L. Murty (The Minerals, Metals and Materials Society, Warrendale, PA, 1999) p. 425.

  9. G. W. GREENWOOD, in “Creep Behavior of Advanced Materials for the 21st Century,” edited by R. S. Mishra, A. K. Mukherjee and K. L. Murty (The Minerals, Metals and Materials Society, Warrendale, PA, 1999) p. 413.

  10. K. R. M CNEE, G. W. GREENWOOD and H. JONES, Scripta Mater. 46 (2002) 437.

    Article  CAS  Google Scholar 

  11. J. WEERTMAN, J. Appl. Phys. 28 (1957) 362.

    Article  CAS  Google Scholar 

  12. Idem., ibid. 28 (1957) 1185.

    Google Scholar 

  13. F. A. MOHAMED and T. G. LANGDON, Acta Metall. 22 (1974) 779.

    Article  CAS  Google Scholar 

  14. P. YAVARI and T. G. LANGDON, ibid. 30 (1982) 2181.

    Article  CAS  Google Scholar 

  15. T. ENDO, T. SHIMADA and T. G. LANGDON, ibid. 32 (1984) 1991.

    Article  CAS  Google Scholar 

  16. W. ROSENHAIN and D. EWEN, J. Inst. Metals 8 (1912) 149.

    Google Scholar 

  17. Idem., ibid. 10 (1913) 119.

    Google Scholar 

  18. W. ROSENHAIN and J. C. W. HUMFREY, J. Iron Steel Inst. 87 (1913) 219.

    Google Scholar 

  19. H. F. MOORE, B. B. BETTY and C. W. DOLLINS, University of Illinois Engineering Experimental Station Bulletin #272, 32 (1935) 23.

    Google Scholar 

  20. Idem., ibid. 35 (1938) 102.

    Google Scholar 

  21. R. KING, R. W. CAHN and B. CHALMERS, Nature 161 (1948) 682.

    Google Scholar 

  22. F. WEINBERG, Acta Metall. 2 (1954) 889.

    Article  Google Scholar 

  23. Idem., Trans. AIME 212 (1958) 808.

    Google Scholar 

  24. J. INTRATER and E. S. MACHLIN, J. Inst. Metals 88 (1959–1960) 305.

    Google Scholar 

  25. K. E. PUTTICK and R. KING, J. Inst. Metals 80 (1951–1952) 537.

    Google Scholar 

  26. N. R. ADSIT, and J. O. BRITTAIN, Trans. AIME 218 (1960) 765.

    CAS  Google Scholar 

  27. R. L. BELL and T. G. LANGDON, J. Mater. Sci. 2 (1967) 313.

    Article  CAS  Google Scholar 

  28. R. C. GIFKINS, A. GITTINS, R. L. BELL and T. G. LANGDON, ibid. 3 (1968) 306.

    Article  CAS  Google Scholar 

  29. W. A. RACHINGER, J. Inst. Metals 81 (1952–1953) 33.

    CAS  Google Scholar 

  30. I. M. LIFSHITZ, Soviet Phys. JETP 17 (1963) 909.

    Google Scholar 

  31. R. L. BELL, C. GRAEME-BARBER and T. G. LANGDON, Trans. AIME 239 (1967) 1821.

    CAS  Google Scholar 

  32. T. G. LANGDON, Metall. Trans. 3 (1972) 797.

    CAS  Google Scholar 

  33. H. BRUNNER and N. J. GRANT, Trans. AIME 215 (1959) 48.

    CAS  Google Scholar 

  34. T. G. LANGDON, Mater. Sci. Eng. A 166 (1993) 67.

    Article  Google Scholar 

  35. T. G. LANGDON and R. L. BELL, Trans. AIME 242 (1968) 2479.

    Google Scholar 

  36. J. E. BIRD, A. K. MUKHERJEE and J. E. DORN, in “Quantitative Relation between Properties and Microstructure,” edited by D. G. Brandon and A. Rosen (Israel Universities Press, Jerusalem, Israel, 1969) p. 255.

    Google Scholar 

  37. T. G. LANGDON, Phil. Mag. 22 (1970) 689.

    Google Scholar 

  38. R. C. FOLWEILER, J. Appl. Phys. 32 (1961) 773.

    Article  CAS  Google Scholar 

  39. W. L. BARMORE and R. R. VANDERVOORT, J. Amer. Ceram. Soc. 48 (1965) 499.

    Article  CAS  Google Scholar 

  40. D. R. CROPPER and T. G. LANGDON, Phil. Mag. 18 (1968) 1181.

    CAS  Google Scholar 

  41. T. G. LANGDON and J. A. PASK, Acta Metall. 18 (1970) 505.

    Article  Google Scholar 

  42. T. G. LANGDON, Scripta Metall. 4 (1970) 693.

    Article  CAS  Google Scholar 

  43. W. R. CANNON and T. G. LANGDON, J. Mater. Sci. 18 (1983) 1.

    Article  CAS  Google Scholar 

  44. Idem., ibid. 23 (1988) 1.

    Google Scholar 

  45. R. S. GORDON, J. Amer. Ceram. Soc. 56 (1973) 147.

    Article  CAS  Google Scholar 

  46. T. G. LANGDON and F. A. MOHAMED, J. Mater. Sci. 13 (1978) 473.

    Article  CAS  Google Scholar 

  47. T. G. LANGDON, J. Amer. Ceram. Soc. 55 (1972) 430.

    Article  CAS  Google Scholar 

  48. Idem., ibid. 58 (1975) 92.

    Google Scholar 

  49. W. R. CANNON and O. D. SHERBY, ibid. 60 (1977) 44.

    Article  CAS  Google Scholar 

  50. H. C. HEARD and C. B. RALEIGH, Geol. Soc. Amer. Bull. 83 (1972) 935.

    Google Scholar 

  51. T. G. LANGDON, Mater. Sci. Eng. A 283 (2000) 266.

    Article  Google Scholar 

  52. J. E. HARRIS, Metal Sci. J. 7 (1973) 1.

    Article  CAS  Google Scholar 

  53. R. C. GIFKINS and T. G. LANGDON, Scripta Metall. 4 (1970) 563.

    Article  Google Scholar 

  54. I. G. CROSSLAND and J. C. WOOD, Phil. Mag. 31 (1975) 1415.

    CAS  Google Scholar 

  55. E. H. AIGELTINGER and R. C. GIFKINS, J. Mater. Sci. 10 (1975) 1889.

    Article  CAS  Google Scholar 

  56. R. C. GIFKINS, T. G. LANGDON and D. M CLEAN, Metal Sci. 9 (1975) 141.

    Article  Google Scholar 

  57. S. S. SAHAY and G. S. MURTY, J. Nucl. Mater. 195 (1992) 320.

    Article  CAS  Google Scholar 

  58. Idem., Scripta Mater. 44 (2001) 841.

    Article  Google Scholar 

  59. B.-N. KIM and K. HIRAGA, ibid. 42 (2000) 451.

    Article  CAS  Google Scholar 

  60. T. G. LANGDON, Metall. Trans. A 13A (1982) 689.

    Google Scholar 

  61. F. A. MOHAMED, M. M. I. AHMED and T. G. LANGDON, ibid. 8A (1977) 933.

    CAS  Google Scholar 

  62. P. K. CHAUDHURY and F. A. MOHAMED, Acta Metall. 36 (1988) 1099.

    Article  CAS  Google Scholar 

  63. P. K. CHAUDHURY, V. SIVARAMAKRISHNAN and F. A. MOHAMED, Metall. Trans. A 19A (1988) 2741.

    CAS  Google Scholar 

  64. S. YAN, J. C. EARTHMAN and F. A. MOHAMED, Phil. Mag. A 69 (1994) 1017.

    CAS  Google Scholar 

  65. A. H. CHOKSHI, A. K. MUKHERJEE and T. G. LANGDON, Mater. Sci. Eng. R 10 (1993) 237.

    Article  CAS  Google Scholar 

  66. T. G. LANGDON, J. Mater. Sci. 16 (1981) 2613.

    Article  CAS  Google Scholar 

  67. R. Z. VALIEV and O. A. KAIBYSHEV, Acta Metall. 31 (1983) 2121.

    Article  CAS  Google Scholar 

  68. T. G. LANGDON, Mater. Sci. Eng. A 174 (1994) 225.

    Article  Google Scholar 

  69. R. B. VASTAVA and T. G. LANGDON, Acta Metall. 27 (1979) 251.

    Article  CAS  Google Scholar 

  70. P. SHARIAT, R. B. VASTAVA and T. G. LANGDON, ibid. 30 (1982) 285.

    Article  CAS  Google Scholar 

  71. Z.-R. LIN, A. H. CHOKSHI and T. G. LANGDON, J. Mater. Sci. 23 (1988) 2712.

    Article  CAS  Google Scholar 

  72. F. A. MOHAMED and T. G. LANGDON, Scripta Metall. 10 (1976) 759.

    Article  CAS  Google Scholar 

  73. A. BALL and M. M. HUTCHISON, Metal Sci. J. 3 (1969) 1.

    Article  Google Scholar 

  74. F. A. MOHAMED and T. G. LANGDON, Acta Metall. 23 (1975) 117.

    Article  CAS  Google Scholar 

  75. F. A. MOHAMED, S.-A. SHEI and T. G. LANGDON, ibid. 23 (1975) 1443.

    Article  CAS  Google Scholar 

  76. F. A. MOHAMED and T. G. LANGDON, Phil. Mag. 32 (1975) 697.

    CAS  Google Scholar 

  77. T. G. LANGDON, Acta Metall. Mater. 42 (1994) 2437.

    Article  CAS  Google Scholar 

  78. R. B. VASTAVA and T. G. LANGDON, in “Advances in Materials Technology in the Americas—1980,” edited by I. Le May (The American Society of Mechanical Engineers, New York, NY, 1980) vol. 21, p. 61.

  79. F. A. MOHAMED and T. G. LANGDON, Metall. Trans. 5 (1974) 2339.

    CAS  Google Scholar 

  80. S. HARPER, in “Structural Processes in Creep” (The Iron and Steel Institute, London, U.K., 1961), p. 56.

  81. J. FRIEDEL, Dislocations (Pergamon Press, Oxford, U.K., 1964).

    Google Scholar 

  82. P. YAVARI and T. G. LANGDON, Mater. Sci. Eng. 57 (1983) 55.

    Article  CAS  Google Scholar 

  83. R. C. GIFKINS and T. G. LANGDON, J. Inst. Metals 93 (1964–1965) 347.

    Google Scholar 

  84. H. VAN SWYGENHOVEN and A. CARO, Appl. Phys. Lett. 71 (1997) 1652.

    Article  CAS  Google Scholar 

  85. J. SCHIøTZ, F. D. DI TOLLA and K. W. JACOBSEN, Nature 391 (1998) 561.

    Article  Google Scholar 

  86. H. VAN SWYGENHOVEN, M. SPACZER, A. CARO and D. FARKAS, Phys. Rev. 60 (1999) 22.

    Article  CAS  Google Scholar 

  87. H. VAN SWYGENHOVEN and P. M. DERLET, Phys. Rev. B 64 (2001) 224105.

    Article  Google Scholar 

  88. K. S. KUMAR, H. VAN SWYGENHOVEN and S. SURESH, Acta Mater. 51 (2003) 5743.

    Article  CAS  Google Scholar 

  89. L. LU, M. L. SUI and K. LU, Science 287 (2000) 1463.

    Article  CAS  Google Scholar 

  90. R. Z. VALIEV, E. V. KOZLOV, Y. F. IVANOV, J. LIAN, A. A. NAZAROV and B. BAUDELET, Acta Metall. Mater. 42 (1994) 2467.

    Article  CAS  Google Scholar 

  91. R. Z. VALIEV, I. V. ALEXANDROV, Y. T. ZHU and T. C. LOWE, J. Mater. Res. 17 (2002) 5.

    CAS  Google Scholar 

  92. Z. HORITA, K. OHASHI, T. FUJITA, K. KANEKO and T. G. LANGDON, Adv. Mater. 17 (2005) 1599.

  93. R. Z. VALIEV, Nature Mater. 3 (2004) 511.

    Article  CAS  Google Scholar 

  94. Z. HORITA, D. J. SMITH, M. FURUKAWA, M. NEMOTO, R. Z. VALIEV and T. G. LANGDON, J. Mater. Res. 11 (1996) 1880.

    CAS  Google Scholar 

  95. H. HAHN, P. MONDAL and K. A. PADMANABHAN, Nanostruct. Mater. 9 (1997) 603.

    Article  CAS  Google Scholar 

  96. H. HAHN and K. A. PADMANABHAN, Phil. Mag. B 76 (1997) 559.

    CAS  Google Scholar 

  97. A. VINOGRADOV, S. HASHIMOTO, V. PATLAN and K. KITAGAWA, Mater. Sci. Eng. A 319–321 (2001) 802.

    Google Scholar 

  98. Y. HUANG and T. G. LANGDON, ibid. 358 (2003) 114.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence G. Langdon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langdon, T.G. Grain boundary sliding revisited: Developments in sliding over four decades. J Mater Sci 41, 597–609 (2006). https://doi.org/10.1007/s10853-006-6476-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-6476-0

Keywords

Navigation