Skip to main content

Competing Grain Boundary and Interior Deformation Mechanisms with Varying Sizes

  • Living reference work entry
  • First Online:
Handbook of Mechanics of Materials

Abstract

In typical coarse-grained alloys, the dominant plastic deformations are dislocation gliding or climbing, and material strengths can be tuned by dislocation interactions with grain boundaries, precipitates, solid solutions, and other defects. With the reduction of grain size, the increase of material strengths follows the classic Hall-Petch relationship up to nano-grained materials. Even at room temperatures, nano-grained materials exhibit strength softening, or called the inverse Hall-Petch effect, as grain boundary processes take over as the dominant deformation mechanisms. On the other hand, at elevated temperatures, grain boundary processes compete with grain interior deformation mechanisms over a wide range of the applied stress and grain sizes. This book chapter reviews and compares the rate equation model and the microstructure-based finite element simulations. The latter explicitly accounts for the grain boundary sliding, grain boundary diffusion and migration, as well as the grain interior dislocation creep. Therefore the explicit finite element method has clear advantages in problems where microstructural heterogeneities play a critical role, such as in the gradient microstructure in shot peening or weldment. Furthermore, combined with the Hall-Petch effect and its breakdown, the above competing processes help construct deformation mechanism maps by extending from the classic Frost-Ashby type to the ones with the dependence of grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Coble RLA. Model for boundary diffusion controlled creep in polycrystalline materials. J Appl Phys. 1963;34:1679–82.

    Article  Google Scholar 

  2. Herring C. Diffusion viscosity of a polycrystalline solids. J Appl Phys. 1950;21:437–45.

    Article  Google Scholar 

  3. Nabarro FRN. Steady state diffusional creep. Philos Mag A. 1967;16:231–7.

    Article  Google Scholar 

  4. Cai B, Kong QP, Lu L, Low LK. Temperature creep of nanocrystalline pure copper. Mater Sci Eng A. 2000;286:188–92.

    Article  Google Scholar 

  5. Cai B, Kong QP, Cui P, Lu L, Creep LK. Behavior of cold-rolled nanocrystalline pure copper. Scr Mater. 2001;45:1407–13.

    Article  Google Scholar 

  6. Millet PC, Desai T, Yamakov V, Wolf D. Atomistic simulations of diffusional creep in nanocrystalline bogy-centered cubic material. Acta Mater. 2008;56:3688–98.

    Article  Google Scholar 

  7. Wei YJ, Bower AF, Gao HJ. Recoverable creep deformation due to heterogeneous grain-boundary diffusion and sliding. Scr Mater. 2007;57:933–6.

    Article  Google Scholar 

  8. Cao ZH, Wang L, Hu K, Huang YL, Meng XK. Microstructural evolution and its influence on creep and stress relaxation in nanocrystalline Ni. Acta Mater. 2012;60:6742–54.

    Article  Google Scholar 

  9. Hasnaoui A, Derlet PM, Van Swygenhoven H. Interaction between dislocations and grain boundaries under an indenter – a molecular dynamics simulation. Acta Mater. 2004;52:2251–8.

    Article  Google Scholar 

  10. Wang YJ, Ishii A, Ogata S. Transition of creep mechanism in nanocrystalline metals. Phys Rev B. 2011;84:224102.

    Article  Google Scholar 

  11. Wang YJ, Ishii A, Ogata S. Grain size dependence of creep in nanocrystalline copper by molecular dynamics. Mater Trans. 2012;53:156–60.

    Article  Google Scholar 

  12. Zhu T, Li J. Ultra-strength materials. Prog Mater Sci. 2010;55:710–57.

    Article  Google Scholar 

  13. Hall EO. The deformation and ageing of mild steel. 3. Discussion of results. Proc Phys Soc London Sect B. 1951;64:747–53.

    Article  Google Scholar 

  14. Petch NJ. The cleavage strength of polycrystals. J Iron Steel Inst Jpn. 1953;174:25–8.

    Google Scholar 

  15. Chokshi AH, Rosen A, Karch J, Gleiter H. On the validity of the Hall-Petch relationship in nanocrystalline materials. Scr Mater. 1989;23:1679–84.

    Google Scholar 

  16. Masumura RA, Hazzledine PM, Pande CS. Yield strength of fine grained materials. Acta Mater. 1998;46:4527–34.

    Article  Google Scholar 

  17. Nieh TG, Wadsworth J. Hall-Petch relation in nanocrystalline solids. Scr Metall Mater. 1991;25:955–8.

    Article  Google Scholar 

  18. Pande CS, Cooper KP. Nanomechanics of Hall-Petch relationship in nanocrystalline materials. Prog Mater Sci. 2009;54:689–706.

    Article  Google Scholar 

  19. Trelewicz JR, Schuh CA. The Hall-Petch breakdown in nanocrystalline metals: a crossover to glass-like deformation. Acta Mater. 2007;55:5948–58.

    Article  Google Scholar 

  20. Frost HJ, Ashby MF. Deformation-mechanism maps. Oxford: Pergamon Press; 1982.

    Google Scholar 

  21. Bower AF, Wininger EA. Two-dimensional finite element method for simulating the constitutive response and microstructure of polycrystals during high temperature plastic deformation. J Mech Phys Solids. 2004;52:1289–317.

    Article  MATH  Google Scholar 

  22. Cipoletti DE, Bower AF, Krajewski PEA. Microstructure-based model of the deformation mechanisms and flow stress during elevated-temperature straining of a magnesium alloy. Scr Mater. 2011;64:931–4.

    Article  Google Scholar 

  23. Mukherjee AK, Bird JE, Dorn JE. Experimental correlations for high temperature creep. Trans ASM. 1969;62:155–79.

    Google Scholar 

  24. Weertman J. Dislocation climb theory of steady-state creep. Trans ASM. 1968;61:681–94.

    Google Scholar 

  25. Lund RW, Nix WD. High temperature creep of Ni-20Cr-2ThO2 single crystal. Acta Metall. 1976;24:469–81.

    Article  Google Scholar 

  26. Ball A, Hutchison MM. Superplasticity in aluminum-zinc eutectoid. Met Sci J. 1969;3:1–6.

    Article  Google Scholar 

  27. Langdon TG. Grain boundary sliding as a deformation mechanism during creep. Philos Mag. 1970;178:689–700.

    Article  Google Scholar 

  28. Conard H, Narayan J. Mechanics for grain hardening and softening in Zn. Acta Mater. 2002;50:5067–78.

    Article  Google Scholar 

  29. Conard H. Grain-size dependence of the flow stress of Cu from millimeters to nanometers. Metall Mater Trans A. 2004;35:2681–95.

    Article  Google Scholar 

  30. Van Swygenhoven H, Derlet PM. Grain boundary sliding in nanocrystalline fcc metals. Phys Rev B. 2001;64:224105.

    Article  Google Scholar 

  31. Schiøtz J, Di Tolla FD, Jacobsen KW. Softening of nanocrystalline metals at very small grain sizes. Nature. 1998;391:561–3.

    Article  Google Scholar 

  32. Schiøtz J, Vegge T, Di Tolla FD, Jacobsen KW. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys Rev B. 1999;60:11971.

    Article  Google Scholar 

  33. Yamakov V, Wolf D, Salazar M, Phillpot SR, Gleiter H. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 2001;49:2713–22.

    Article  Google Scholar 

  34. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H. Dislocation process in the deformation of nanocrystalline aluminum by molecular-dynamics simulation. Nat Mater. 2002;1:1–4.

    Article  Google Scholar 

  35. Yu CH, Bird MW, Huang CW, Chen CS, Gao YF, White KW, Hsueh CH. Micromechanics modeling of creep fracture of zirconium diboride-silicon carbide composites at 1400–1700 °C. J Eur Ceram Soc. 2014;34:4145–55.

    Article  Google Scholar 

  36. Kumar KS, Van Swygenhoven H, Suresh S. Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 2003;51:5743–74.

    Article  Google Scholar 

  37. Carsley JE, Ning J, Milligan WW, Hackney SA, Aifantis A. Simple mixtures-based model for the grain size dependence of strength in nanophase metals. Nanostruct Mater. 1995;4:441–7.

    Article  Google Scholar 

  38. Yang XS, Wang YJ, Zhai HR, Wang GY, YJ S, Dai LH, Ogata S, Zhang TY. Time-, stress-, and temperature-dependent deformation in nanostructured copper: creep tests and simulations. J Mech Phys Solids. 2016;94:191–206.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfei Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zhang, W., Gao, Y., Nieh, TG. (2018). Competing Grain Boundary and Interior Deformation Mechanisms with Varying Sizes. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6855-3_75-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-6855-3_75-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-6855-3

  • Online ISBN: 978-981-10-6855-3

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics