Skip to main content

Advertisement

Log in

Novel DNAAF6 variants identified by whole-exome sequencing cause male infertility and primary ciliary dyskinesia

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To identify the genetic cause of patients with primary ciliary dyskinesia (PCD) and male infertility from two unrelated Han Chinese families.

Methods

We conducted whole-exome sequencing of three individuals with PCD and male infertility from two unrelated Chinese families, and performed a targeted look-up for DNAAF6 variants in our previously reported cohort of 442 individuals (219 with isolated oligoasthenospermia and 223 fertile controls). Ultrastructural and immunostaining analyses of patients’ spermatozoa were performed. The pathogenicity of the variants was validated using patient’s spermatozoa and HEK293T cells. Intracytoplasmic sperm injection (ICSI) treatment was conducted in two patients.

Results

We identified one novel hemizygous frameshift variant (NM_173494, c.319_329del: p.R107fs) of DNAAF6 gene (previously named PIH1D3) in family 1 and one novel hemizygous missense variant (c.290G>T: p.G97V) in family 2. No hemizygous deleterious variants in DNAAF6 were detected in the control cohort of 442 individuals. Ultrastructural and immunostaining analyses of patients’ spermatozoa showed the absence of outer and inner dynein arms in sperm flagella. Both variants were proven to lead to DNAAF6 protein degradation in HEK293T cells. Both patients carrying DNAAF6 variants underwent one ICSI cycle and delivered one healthy child each.

Conclusion

We identified novel DNAAF6 variants causing male infertility and PCD in Han Chinese patients. This finding extended the spectrum of variants in DNAAF6 and revealed new light on the impact of DNAAF6 variants in sperm flagella.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data and material that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Davis EE, Katsanis N. The ciliopathies: a transitional model into systems biology of human genetic disease. Curr Opin Genet Dev. 2012;22(3):290–303.

    Article  CAS  Google Scholar 

  2. Heydeck W, Fievet L, Davis EE, Katsanis N. The complexity of the cilium: spatiotemporal diversity of an ancient organelle. Curr Opin Cell Biol. 2018;55:139–49.

    Article  CAS  Google Scholar 

  3. Stern BM, Sharma G. Ciliary dysfunction (Kartagener syndrome, primary ciliary dyskinesia). Treasure Island (FL): StatPearls; 2018.

    Google Scholar 

  4. Lucas JS, Burgess A, Mitchison HM, Moya E, Williamson M, Hogg C, et al. Diagnosis and management of primary ciliary dyskinesia. Arch Dis Child. 2014;99(9):850–6.

    Article  Google Scholar 

  5. Mirra V, Werner C, Santamaria F. Primary ciliary dyskinesia: an update on clinical aspects, genetics, diagnosis, and future treatment strategies. Front Pediatr. 2017;5:135.

    Article  Google Scholar 

  6. Fassad MR, Shoemark A, le Borgne P, Koll F, Patel M, Dixon M, et al. C11orf70 mutations disrupting the intraflagellar transport-dependent assembly of multiple axonemal dyneins cause primary ciliary dyskinesia. Am J Hum Genet. 2018;102(5):956–72.

    Article  CAS  Google Scholar 

  7. Djakow J, Svobodova T, Hrach K, Uhlik J, Cinek O, Pohunek P. Effectiveness of sequencing selected exons of DNAH5 and DNAI1 in diagnosis of primary ciliary dyskinesia. Pediatr Pulmonol. 2012;47(9):864–75.

    Article  Google Scholar 

  8. Antony D, Becker-Heck A, Zariwala MA, Schmidts M, Onoufriadis A, Forouhan M, et al. Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Hum Mutat. 2013;34(3):462–72.

    Article  CAS  Google Scholar 

  9. Dougherty GW, Loges NT, Klinkenbusch JA, Olbrich H, Pennekamp P, Menchen T, et al. DNAH11 localization in the proximal region of respiratory cilia defines distinct outer dynein arm complexes. Am J Respir Cell Mol Biol. 2016;55(2):213–24.

    Article  CAS  Google Scholar 

  10. Zietkiewicz E, Nitka B, Voelkel K, Skrzypczak U, Bukowy Z, Rutkiewicz E, et al. Population specificity of the DNAI1 gene mutation spectrum in primary ciliary dyskinesia (PCD). Respir Res. 2010;11:174.

    Article  CAS  Google Scholar 

  11. Olbrich H, Haffner K, Kispert A, Volkel A, Volz A, Sasmaz G, et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet. 2002;30(2):143–4.

    Article  CAS  Google Scholar 

  12. Ferrante MI, Zullo A, Barra A, Bimonte S, Messaddeq N, Studer M, et al. Oral-facial-digital type I protein is required for primary cilia formation and left-right axis specification. Nat Genet. 2006;38(1):112–7.

    Article  CAS  Google Scholar 

  13. Olcese C, Patel MP, Shoemark A, Kiviluoto S, Legendre M, Williams HJ, et al. X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3. Nat Commun. 2017;8:14279.

    Article  CAS  Google Scholar 

  14. Bukowy-Bieryllo Z, Zietkiewicz E, Loges NT, Wittmer M, Geremek M, Olbrich H, et al. RPGR mutations might cause reduced orientation of respiratory cilia. Pediatr Pulmonol. 2013;48(4):352–63.

    Article  Google Scholar 

  15. Paff T, Loges NT, Aprea I, Wu K, Bakey Z, Haarman EG, et al. Mutations in PIH1D3 cause X-linked primary ciliary dyskinesia with outer and inner dynein arm defects. Am J Hum Genet. 2017;100(1):160–8.

    Article  CAS  Google Scholar 

  16. Krausz C, Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol. 2018;15(6):369–84.

    Article  CAS  Google Scholar 

  17. Ray PF, Toure A, Metzler-Guillemain C, Mitchell MJ, Arnoult C, Coutton C. Genetic abnormalities leading to qualitative defects of sperm morphology or function. Clin Genet. 2017;91(2):217–32.

    Article  CAS  Google Scholar 

  18. El Khouri E, Thomas L, Jeanson L, Bequignon E, Vallette B, Duquesnoy P, et al. Mutations in DNAJB13, encoding an HSP40 family member, cause primary ciliary dyskinesia and male infertility. Am J Hum Genet. 2016;99(2):489–500.

    Article  Google Scholar 

  19. Mali GR, Yeyati PL, Mizuno S, Dodd DO, Tennant PA, Keighren MA, et al. ZMYND10 functions in a chaperone relay during axonemal dynein assembly. Elife. 2018;7:e34389.

    Article  Google Scholar 

  20. Fenglan D, Kyosuke S, Yanick B, Ryo N, Yasuko A, Akemi F, et al. Pih1d3 is required for cytoplasmic preassembly of axonemal dynein in mouse sperm. J Cell Biol. 2014;204(2):203–13.

    Article  Google Scholar 

  21. Davis SD, Rosenfeld M, Lee HS, Ferkol TW, Sagel SD, Dell SD, et al. Primary ciliary dyskinesia: longitudinal study of lung disease by ultrastructure defect and genotype. Am J Respir Crit Care Med. 2019;199(2):190–8.

    Article  CAS  Google Scholar 

  22. Kawasaki A, Okamoto H, Wada A, Ainoya Y, Kita N, Maeyama T, et al. A case of primary ciliary dyskinesia treated with ICSI using testicular spermatozoa: case report and a review of the literature. Reproductive Medicine & Biology. 2015;14(4):195–200.

    Article  Google Scholar 

  23. Wang W, Tu C, Nie H, Meng L, Li Y, Yuan S, et al. Biallelic mutations in CFAP65 lead to severe asthenoteratospermia due to acrosome hypoplasia and flagellum malformations. J Med Genet. 2019;56(11):750–7.

    Article  Google Scholar 

  24. Sanchez-Alvarez J, Cano-Corres R, Fuentes-Arderiu X. A complement for the WHO laboratory manual for the examination and processing of human semen (first edition, 2010). EJIFCC. 2012;23(3):103–6.

    PubMed  PubMed Central  Google Scholar 

  25. Tan YQ, Tu C, Meng L, Yuan S, Sjaarda C, Luo A, et al. Loss-of-function mutations in TDRD7 lead to a rare novel syndrome combining congenital cataract and nonobstructive azoospermia in humans. Genet Med. 2019;21(5):1209–17.

    Article  CAS  Google Scholar 

  26. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.

    Article  Google Scholar 

  27. Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE, Mouse Genome Database G. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease. Nucleic Acids Res. 2015;43(Database issue):D726–36.

    Article  CAS  Google Scholar 

  28. Gong F, Li X, Zhang S, Ma H, Cai S, Li J, et al. A modified ultra-long pituitary downregulation protocol improved endometrial receptivity and clinical outcome for infertile patients with polycystic ovarian syndrome. Exp Ther Med. 2015;10(5):1865–70.

    Article  CAS  Google Scholar 

  29. Gu YF, Zhou QW, Zhang SP, Lu CF, Gong F, Shi Y, et al. The clinical and neonatal outcomes after stimulation of immotile spermatozoa using SperMagic medium. Andrologia. 2018;50(7):e13056.

    Article  Google Scholar 

  30. Pereira R, Oliveira ME, Santos R, Oliveira E, Barbosa T, Santos T, et al. Characterization of CCDC103 expression profiles: further insights in primary ciliary dyskinesia and in human reproduction. J Assist Reprod Genet. 2019;36(8):1683–700.

    Article  CAS  Google Scholar 

  31. Höben IM, Hjeij R, Olbrich H, Dougherty GW, Nöthe-Menchen T, Aprea I, et al. Mutations in C11orf70 cause primary ciliary dyskinesia with randomization of left/right body asymmetry due to defects of outer and inner dynein arms. Am J Hum Genet. 2018;102(5):973–84.

    Article  Google Scholar 

  32. Bonnefoy S, Watson CM, Kernohan KD, Lemos M, Hutchinson S, Poulter JA, et al. Biallelic mutations in LRRC56, encoding a protein associated with intraflagellar transport, cause mucociliary clearance and laterality defects. Am J Hum Genet. 2018;103(5):727–39.

    Article  CAS  Google Scholar 

  33. Kott E, Duquesnoy P, Copin B, Legendre M, Dastot-Lemoal F, Montantin G, et al. Loss-of-function mutations in LRRC6, a gene essential for proper axonemal assembly of inner and outer dynein arms, cause primary ciliary dyskinesia. Am J Hum Genet. 2012;91(5):958–64.

    Article  CAS  Google Scholar 

  34. Coutton C, Escoffier J, Martinez G, Arnoult C, Ray PF. Teratozoospermia: spotlight on the main genetic actors in the human. Hum Reprod Update. 2015;21(4):455–85.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank all the families and individuals who participated in this study. We are grateful to the excellent technical support provided by Junpu Wang, as well as support from the clinical and nursing staff at the Reproductive and Genetic Hospital of CITIC-Xiangya.

Funding

This work was supported by the National Key Research & Developmental Program of China (2018YFC1004900 to YQ.T), the National Natural Science Foundation of China (81771645 and 81971447 to YQ.T), the science and technology major project of the Ministry of Science and Technology of Hunan Province (2017SK1030 to YQ.T), the China Postdoctoral Science Foundation Funded Project (2019M662786 to CF.T), and the Graduate Research and Innovation Projects of Central South University (2019zzts998 to Y.W).

Author information

Authors and Affiliations

Authors

Contributions

Juan Du and Yue-Qiu Tan designed the study. Lanlan Meng, Dongyan Li, and Weili Wang performed the variant analysis. Ying Wang and Chaofeng Tu carried out the evaluation of the pathogenicity of variations and spermatozoa functional analyses. Hongchuan Nie, Huan Zhang, Guangxiu Lu, and Ge Lin worked on the clinical study. Ying Wang, Chaofeng Tu, Yue-Qiu Tan, and Juan Du wrote the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yue-Qiu Tan or Juan Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Tu, C., Nie, H. et al. Novel DNAAF6 variants identified by whole-exome sequencing cause male infertility and primary ciliary dyskinesia. J Assist Reprod Genet 37, 811–820 (2020). https://doi.org/10.1007/s10815-020-01735-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01735-4

Keywords

Navigation