Skip to main content
Log in

Therapeutic effects and mechanisms of isoxanthohumol on DSS-induced colitis: regulating T cell development, restoring gut microbiota, and improving metabolic disorders

  • Original Article
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Ulcerative colitis (UC) is a severe hazard to human health. Since pathogenesis of UC is still unclear, current therapy for UC treatment is far from optimal. Isoxanthohumol (IXN), a prenylflavonoid from hops and beer, possesses anti-microbial, anti-oxidant, anti-inflammatory, and anti-angiogenic properties. However, the potential effects of IXN on the alleviation of colitis and the action of the mechanism is rarely studied. Here, we found that administration of IXN (60 mg/kg/day, gavage) significantly attenuated dextran sodium sulfate (DSS)-induced colitis, evidenced by reduced DAI scores and histological improvements, as well as suppressed the pro-inflammatory Th17/Th1 cells but promoted the anti-inflammatory Treg cells. Mechanically, oral IXN regulated T cell development, including inhibiting CD4+ T cell proliferation, promoting apoptosis, and regulating Treg/Th17 balance. Furthermore, IXN relieved colitis by restoring gut microbiota disorder and increasing gut microbiota diversity, which was manifested by maintaining the ratio of Firmicutes/Bacteroidetes balance, promoting abundance of Bacteroidetes and Ruminococcus, and suppressing abundance of proteobacteria. At the same time, the untargeted metabolic analysis of serum samples showed that IXN promoted the upregulation of D-( +)-mannose and L-threonine and regulated pyruvate metabolic pathway. Collectively, our findings revealed that IXN could be applied as a functional food component and served as a therapeutic agent for the treatment of UC.

Graphical abstract

Model of IXN ameliorated DSS-induced colitis via regulating T cell development and restoring gut microbiota. Oral IXN could effectively alleviate DSS-induced colitis. Mechanically, IXN restored gut microbiota disorder, increased gut microbiota diversity, altered serum metabolic profile, and regulated Treg/Th17 balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Argollo MC et al (2018) The impact of biologics in surgical outcomes in ulcerative colitis. Best Pract Res Clin Gastroenterol 32–33:79–87

    Article  PubMed  Google Scholar 

  • Barberio B et al (2022) A specific microbiota signature is associated to various degrees of ulcerative colitis as assessed by a machine learning approach. Gut Microbes 14(1):2028366

    Article  PubMed  PubMed Central  Google Scholar 

  • Berry D, Reinisch W (2013) Intestinal microbiota: a source of novel biomarkers in inflammatory bowel diseases? Best Pract Res Clin Gastroenterol 27(1):47–58

    Article  CAS  PubMed  Google Scholar 

  • Bücker R et al (2014) α-Haemolysin of Escherichia coli in IBD: a potentiator of inflammatory activity in the colon. Gut 63(12):1893–1901

    Article  PubMed  Google Scholar 

  • Chen M, Ding Y, Tong Z (2020) Efficacy and Safety of (Kushen) Based Traditional Chinese Medicine in the Treatment of Ulcerative Colitis: Clinical Evidence and Potential Mechanisms. Front Pharmacol 11:603476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z et al (2022) Lactobacillus casei SYF-08 Protects Against Pb-Induced Injury in Young Mice by Regulating Bile Acid Metabolism and Increasing Pb Excretion. Front Nutr 9:914323

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, et al. (2020) Ferroptosis mediated DSS-induced ulcerative colitis associated with Nrf2/HO-1 signaling pathway. Immunol Lett 225.

  • Choi C-HR et al (2019) Cumulative burden of inflammation predicts colorectal neoplasia risk in ulcerative colitis: a large single-centre study. Gut 68(3):414–422

    Article  PubMed  Google Scholar 

  • de Mattos BRR et al (2015) Inflammatory Bowel Disease: An Overview of Immune Mechanisms and Biological Treatments. Mediators Inflamm 2015:493012

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng G et al (2019) Foxp3 Post-translational Modifications and Treg Suppressive Activity. Front Immunol 10:2486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di’Narzo AF et al (2022) Integrative Analysis of the Inflammatory Bowel Disease Serum Metabolome Improves Our Understanding of Genetic Etiology and Points to Novel Putative Therapeutic Targets. Gastroenterology 162:3

    Article  Google Scholar 

  • Dong L et al (2022) Mannose ameliorates experimental colitis by protecting intestinal barrier integrity. Nat Commun 13(1):4804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fábrega M-J et al (2017) Intestinal Anti-inflammatory Effects of Outer Membrane Vesicles from Escherichia coli Nissle 1917 in DSS-Experimental Colitis in Mice. Front Microbiol 8:1274

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng T et al (2010) Microbiota innate stimulation is a prerequisite for T cell spontaneous proliferation and induction of experimental colitis. J Exp Med 207(6):1321–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y-P et al (2022) Pectic polysaccharides from Aconitum carmichaelii leaves protects against DSS-induced ulcerative colitis in mice through modulations of metabolism and microbiota composition. Biomed Pharmacther Biomed Pharmacother 155:113767

    Article  CAS  PubMed  Google Scholar 

  • Fukizawa S et al (2020) Isoxanthohumol, a hop-derived flavonoid, alters the metabolomics profile of mouse feces. Biosci Microb Food Health 39(3):100–108

    Article  CAS  Google Scholar 

  • Gaifem J et al (2018) L-Threonine Supplementation During Colitis Onset Delays Disease Recovery. Front Physiol 9:1247

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomaa EZ (2020) Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek 113(12):2019–2040

    Article  PubMed  Google Scholar 

  • Gonçalves JL et al (2013) A semi-automatic microextraction in packed sorbent, using a digitally controlled syringe, combined with ultra-high pressure liquid chromatography as a new and ultra-fast approach for the determination of prenylflavonoids in beers. J Chromatogr A 1304:42–51

    Article  PubMed  Google Scholar 

  • Jin JH et al (2010) Anti-inflammatory and anti-arthritic activity of total flavonoids of the roots of Sophora flavescens. J Ethnopharmacol 127(3):589–595

    Article  CAS  PubMed  Google Scholar 

  • Kamzolova SV, Morgunov IG (2016) Biosynthesis of pyruvic acid from glucose by Blastobotrys adeninivorans. Appl Microbiol Biotechnol 100(17):7689–7697

    Article  CAS  PubMed  Google Scholar 

  • Kanauchi O et al (2002) Treatment of ulcerative colitis by feeding with germinated barley foodstuff: first report of a multicenter open control trial. J Gastroenterol 37(Suppl 14):67–72

    Article  CAS  PubMed  Google Scholar 

  • Kanauchi O et al (2005) The beneficial effects of microflora, especially obligate anaerobes, and their products on the colonic environment in inflammatory bowel disease. Curr Pharm Des 11(8):1047–1053

    Article  CAS  PubMed  Google Scholar 

  • Krajnović T et al (2016) Versatile antitumor potential of isoxanthohumol: Enhancement of paclitaxel activity in vivo. Pharmacol Res 105:62–73

    Article  PubMed  Google Scholar 

  • Krajnović T et al (2019) The hop-derived prenylflavonoid isoxanthohumol inhibits the formation of lung metastasis in B16–F10 murine melanoma model. Food Chem Toxicol Internat J Publis Br Indust Biol Res Assoc 129:257–268

    Article  Google Scholar 

  • Lavelle A et al (2015) Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut 64(10):1553–1561

    Article  CAS  PubMed  Google Scholar 

  • Lee H et al (2023) Inhibition of Pyruvate Dehydrogenase Kinase 4 in CD4+ T Cells Ameliorates Intestinal Inflammation. Cell Mol Gastroenterol Hepatol 15(2):439–461

    Article  CAS  PubMed  Google Scholar 

  • Li M et al (2022) Beneficial Effects of Celastrol on Immune Balance by Modulating Gut Microbiota in Experimental Ulcerative Colitis Mice. Genom Proteom Bioinformat 20(2):288–303

    Article  CAS  Google Scholar 

  • Lin L et al (2022) Isoxanthohumol, a component of Sophora flavescens, promotes the activation of the NLRP3 inflammasome and induces idiosyncratic hepatotoxicity. J Ethnopharmacol 285:114796

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2022) Enzymatic modification of D-mannose alleviates DSS-induced colonic inflammation in mice through macrophage polarization mediated by PPARγ. Food Funct 13(22):11467–11475

    Article  CAS  PubMed  Google Scholar 

  • Ma G et al (2021) Inhibitory effects of β-type glycosidic polysaccharide from on dextran sodium sulfate-induced colitis in mice. Food Funct 12(9):3831–3841

    Article  CAS  PubMed  Google Scholar 

  • Miossec P, Kolls JK (2012) Targeting IL-17 and TH17 cells in chronic inflammation. Nat Rev Drug Discovery 11(10):763–776

    Article  CAS  PubMed  Google Scholar 

  • Morgan XC et al (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13(9):R79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neurath MF (2014) Cytokines in inflammatory bowel disease. Nat Rev Immunol 14(5):329–342

    Article  CAS  PubMed  Google Scholar 

  • Nyland JF et al (2009) In vitro interactions between splenocytes and dansylamide dye-embedded nanoparticles detected by flow cytometry. Nanomed Nanotechnol Biol Med 5(3):298–304

    Article  CAS  Google Scholar 

  • Ordás I et al (2012) Ulcerative colitis. Lancet (london, England) 380(9853):1606–1619

    Article  PubMed  Google Scholar 

  • Popov J et al (2021) Microbiota-Immune Interactions in Ulcerative Colitis and Colitis Associated Cancer and Emerging Microbiota-Based Therapies. Internat J Mol Sci 22:21

    Article  Google Scholar 

  • Possemiers S et al (2005) Activation of proestrogens from hops (Humulus lupulus L.) by intestinal microbiota; conversion of isoxanthohumol into 8-prenylnaringenin. J Agricult Food Chemist 53(16):6281–6288

    Article  CAS  Google Scholar 

  • Potaniec B et al (2014) Antioxidant activity and spectroscopic data of isoxanthohomol oxime and related compounds. Spectrochimica Acta. Part A Mo Biomol Spectr 118:716–723

    Article  CAS  Google Scholar 

  • Qi W-H et al (2022) 2’, 4’-Dihydroxy-2,3-dimethoxychalcone: A pharmacological inverse agonist of RORγt ameliorating Th17-driven inflammatory diseases by regulating Th17/Treg. Int Immunopharmacol 108:108769

    Article  CAS  PubMed  Google Scholar 

  • Qu Y et al (2021) Kaempferol Alleviates Murine Experimental Colitis by Restoring Gut Microbiota and Inhibiting the LPS-TLR4-NF-κB Axis. Front Immunol 12:679897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan N et al (1998) Pyruvate prevents hydrogen peroxide-induced apoptosis. Free Radical Res 29(4):283–295

    Article  CAS  Google Scholar 

  • Rinninella E et al (2019) What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 7:1

    Article  Google Scholar 

  • Robbins RJ (2003) Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem 51(10):2866–2887

    Article  CAS  PubMed  Google Scholar 

  • Serwe A et al (2012) Inhibition of TGF-β signaling, vasculogenic mimicry and proinflammatory gene expression by isoxanthohumol. Invest New Drugs 30(3):898–915

    Article  CAS  PubMed  Google Scholar 

  • Sharma V et al (2018) Mannose Alters Gut Microbiome, Prevents Diet-Induced Obesity, and Improves Host Metabolism. Cell Rep 24(12):3087–3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Z-H et al (2018) Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J Gastroenterol 24:1

    Article  Google Scholar 

  • Sinha SR et al (2020) Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes Intestinal Inflammation. Cell Host Microbe 27:4

    Article  Google Scholar 

  • Stompor M et al (2015) Insect Antifeedant Potential of Xanthohumol, Isoxanthohumol, and Their Derivatives. J Agric Food Chem 63(30):6749–6756

    Article  CAS  PubMed  Google Scholar 

  • Ungaro R et al (2017) Ulcerative colitis. Lancet (london, England) 389(10080):1756–1770

    Article  PubMed  Google Scholar 

  • Vacca M et al (2020) The Controversial Role of Human Gut Lachnospiraceae. Microorganisms 8:4

    Article  Google Scholar 

  • Wang G et al (2021) Colonisation with endogenous Lactobacillus reuteri R28 and exogenous Lactobacillus plantarum AR17-1 and the effects on intestinal inflammation in mice. Food Funct 12(6):2481–2488

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y et al (2023) Isoxanthohumol improves obesity and glucose metabolism via inhibiting intestinal lipid absorption with a bloom of Akkermansia muciniphila in mice. Molecular Metabolism 77:101797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z et al (2021) Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis. Microbiome 9(1):184

    Article  PubMed  PubMed Central  Google Scholar 

  • Wyns C et al (2011) Production of monoclonal antibodies against hop-derived (Humulus lupulus L.) prenylflavonoids and the development of immunoassays. Talanta 85(1):197–205

    Article  CAS  PubMed  Google Scholar 

  • Xu D et al (2023) Therapeutic efficacy and underlying mechanisms of Gastrodia elata polysaccharides on dextran sulfate sodium-induced inflammatory bowel disease in mice: Modulation of the gut microbiota and improvement of metabolic disorders. Int J Biol Macromol 248:125919

    Article  CAS  PubMed  Google Scholar 

  • Yamashita M, Fukizawa S, Nonaka Y (2020) Hop-derived prenylflavonoid isoxanthohumol suppresses insulin resistance by changing the intestinal microbiota and suppressing chronic inflammation in high fat diet-fed mice. Eur Rev Med Pharmacol Sci 24(3):1537–1547

    CAS  PubMed  Google Scholar 

  • Yan J-B et al (2020) The Function and Role of the Th17/Treg Cell Balance in Inflammatory Bowel Disease. J Immunol Res 2020:8813558

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J-Y et al (2007) Effect of xanthohumol and isoxanthohumol on 3T3-L1 cell apoptosis and adipogenesis. Apopt Internat J Program Cell Death 12(11):1953–1963

    Article  CAS  Google Scholar 

  • Yang T et al (2020) Eriodictyol suppresses Th17 differentiation and the pathogenesis of experimental autoimmune encephalomyelitis. Food Funct 11(8):6875–6888

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2020) Identification of the core active structure of a Dendrobium officinale polysaccharide and its protective effect against dextran sulfate sodium-induced colitis via alleviating gut microbiota dysbiosis. Food Res Internat (ottawa Ont) 137:109641

    Article  CAS  Google Scholar 

  • Zhang Z et al (2021) Differential effects of EPA and DHA on DSS-induced colitis in mice and possible mechanisms involved. Food Funct 12(4):1803–1817

    Article  CAS  PubMed  Google Scholar 

  • Zhao K et al (2022) Norkurarinone and isoxanthohumol inhibit high glucose and hypoxia-induced angiogenesis via improving oxidative stress and regulating autophagy in human retinal microvascular endothelial cells. Biochem Biophys Res Commun 634:20–29

    Article  CAS  PubMed  Google Scholar 

  • Zhou G et al (2018) CD177 neutrophils as functionally activated neutrophils negatively regulate IBD. Gut 67(6):1052–1063

    Article  CAS  PubMed  Google Scholar 

  • Żołnierczyk AK et al (2015) Isoxanthohumol-Biologically active hop flavonoid. Fitoterapia 103:71–82

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Chinese National Natural Science Foundation (Grant Nos. 92268118, 82071396, 82271199), the Fundamental Research Funds for the Central Universities (Grant Nos. GK202201013, GK202305001, GK202202006), the Tian Jia bing Scholar Program, and Graduate pilot training program of Shaanxi Normal University (LHRCCX23171, LHRCYB23003, LHRCCX23194).

Author information

Authors and Affiliations

Authors

Contributions

YZ and XL conceived and designed the experiments. YNY and BH carried out the experiments, analyzed data and wrote the manuscript. MQZ, NNC, FLY, WHQ, MYT, DZS, YH, QXS, YL, and MCZ verified data and proofed the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yuan Zhang or Xing Li.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethics approval

All experimental procedures on mice were carried out in accordance with the standardized guidelines and specifications (No. ECES-2015–0247), which were approved and supported by the Institutional Animal Ethics Committee of Shaanxi Normal University and strict accordance with the guidelines of ARRIVE (https://arriveguidelines.org/).

Consent to participate or consent for publication

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YN., Han, B., Zhang, MQ. et al. Therapeutic effects and mechanisms of isoxanthohumol on DSS-induced colitis: regulating T cell development, restoring gut microbiota, and improving metabolic disorders. Inflammopharmacol 32, 1983–1998 (2024). https://doi.org/10.1007/s10787-024-01472-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-024-01472-5

Keywords

Navigation