Skip to main content

Advertisement

Log in

Antioxidants: an approach for restricting oxidative stress induced neurodegeneration in Alzheimer’s disease

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the leading cause of dementia, affecting millions of people worldwide. Oxidative stress contributes towards induction of neurodegeneration. It is one of the reasons behind initiation and progression of Alzheimer’s disease. Understanding of oxidative balance and restoration of oxidative stress has demonstrated its effectiveness in the management of AD. Various natural and synthetic molecules have been found to be effective in different models of AD. Some clinical studies also support the use of antioxidants for prevention of neurodegeneration in AD. In this review we are summarizing the development of antioxidants to restrict oxidative stress induced neurodegeneration in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Abdallah M et al (2018) Olive oil polyphenols extracts inhibit inflammatory markers in J774A.1 murine macrophages and scavenge free radicals. Acta Histochem 120(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Abramova NA et al (2002) Inhibition by R(+) or S(–) pramipexole of caspase activation and cell death induced by methylpyridinium ion or beta amyloid peptide in SH-SY5Y neuroblastoma. J Neurosci Res 67(4):494–500

    Article  PubMed  Google Scholar 

  • Ahmadi SM, Farhoosh R, Sharif A, Rezaie M (2020) Structure-antioxidant activity relationships of luteolin and catechin. J Food Sci 85(2):298–305

    Article  CAS  PubMed  Google Scholar 

  • Alam P et al (2019) Elucidating the inhibitory potential of vitamin A against fibrillation and amyloid associated cytotoxicity. Int J Biol Macromol 129:333–338

    Article  CAS  PubMed  Google Scholar 

  • AlBasher G et al (2020) Synergistic antioxidant effects of resveratrol and curcumin against fipronil-triggered oxidative damage in male albino rats. Environ Sci Pollut Res Int 27(6):6505–6514

    Article  CAS  PubMed  Google Scholar 

  • Alzheimer’s Facts and Figures Report | Alzheimer’s Association. https://www.alz.org/alzheimers-dementia/facts-figures. Accessed 19 Jan 2022

  • Auti ST, Kulkarni YA (2019) Neuroprotective effect of cardamom oil against aluminum induced neurotoxicity in rats. Front Neurol 10:399

    Article  PubMed  PubMed Central  Google Scholar 

  • Aybastıer Ö, Demir C (2021) Optimization and validation of ultrasensitive GC-MS/MS method to measure oxidatively induced DNA damage products and role of antioxidants in oxidation mechanism. J Pharm Biomed Anal 200:114068

    Article  PubMed  Google Scholar 

  • Bae SB et al (2021) Gelation and the antioxidant and antibacterial properties of silk fibroin/tannic acid/Zn2+ mixtures. Polymer 230:124090

    Article  CAS  Google Scholar 

  • Balducci C, Forloni G (2019) Doxycycline for Alzheimer’s Disease: fighting β-Amyloid oligomers and neuroinflammation. Front Pharmacol 10:738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barhwal K et al (2009) Acetyl-l-Carnitine (ALCAR) prevents hypobaric hypoxia-induced spatial memory impairment through extracellular related kinase-mediated nuclear factor erythroid 2-related factor 2 phosphorylation. Neuroscience 161(2):501–514

    Article  CAS  PubMed  Google Scholar 

  • Bateman RJ et al (2006) Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat Med 12(7):856–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behl T et al (2021) Role of monoamine oxidase activity in Alzheimer’s Disease: an insight into the therapeutic potential of inhibitors. Molecules 2021 26(12):3724

    CAS  Google Scholar 

  • Bennett J, Burns J, Welch P, Bothwell R (2016) Safety and tolerability of R(+) pramipexole in mild-to-moderate Alzheimer’s Disease. J Alzheimer’s Dis: JAD 49(4):1179–1187

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj PR et al (2013) Latrepirdine: molecular mechanisms underlying potential therapeutic roles in Alzheimer’s and other neurodegenerative diseases. Transl Psychiatry 3(12):e332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman GL et al (2009) Ascorbic acid and rates of cognitive decline in Alzheimer’s Disease. J Alzheimer’s Dis: JAD 16(1):93–98

    Article  CAS  PubMed  Google Scholar 

  • Calkins MJ, Manczak M, Hemachandra Reddy P (2012) Mitochondria-targeted antioxidant SS31 prevents amyloid beta-induced mitochondrial abnormalities and synaptic degeneration in Alzheimer’s Disease. Pharmaceuticals 5(10):1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y et al (2015) Role of NF-E2-Related Factor 2 in neuroprotective effect of l-Carnitine against high glucose-induced oxidative stress in the retinal ganglion cells. Biomed Pharmacother Biomed Pharmacother 69:345–348

    Article  CAS  PubMed  Google Scholar 

  • Cascella M et al (2017) The efficacy of Epigallocatechin-3-Gallate (Green Tea) in the treatment of Alzheimer’s Disease: an overview of pre-clinical studies and translational perspectives in clinical practice. Infect Agents Cancer 12(1):36

    Article  Google Scholar 

  • Castellani RJ et al (1999) Is increased redox-active iron in Alzheimer Disease a failure of the copper-binding protein ceruloplasmin? Free Radic Biol Med 26(11–12):1508–1512

    Article  CAS  PubMed  Google Scholar 

  • Chang KH, Cheng ML, Chiang MC, Chen CM (2018) Lipophilic antioxidants in neurodegenerative diseases. Clin Chim Acta 485:79–87. https://doi.org/10.1016/j.cca.2018.06.031

    Article  CAS  PubMed  Google Scholar 

  • Chang CH, Lin CH, Lane HY (2020) D-Glutamate and gut microbiota in Alzheimer’s Disease. Int J Mol Sci 21(8):2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Zhong C (2014) Oxidative stress in Alzheimer’s Disease. Neurosci Bull 30(2):271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen GF et al (2017) Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sinica 38(9):1205–1235

    Article  CAS  Google Scholar 

  • Chu YF et al (2012) Crude caffeine reduces memory impairment and amyloid β(1–42) levels in an Alzheimer’s mouse model. Food Chem 135(3):2095–2102

    Article  CAS  PubMed  Google Scholar 

  • Colizzi C (2019) The protective effects of polyphenols on Alzheimer’s Disease: a systematic review. Alzheimer’s Dement: Transl Res Clin Interv 5:184

    Article  Google Scholar 

  • DailyMed - ARICEPT- Donepezil Hydrochloride Tablet, Film Coated ARICEPT ODT- Donepezil Hydrochloride Tablet, Orally Disintegrating. https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=98e451e1-e4d7-4439-a675-c5457ba20975. Accessed 11 Feb 2023

  • Danzeisen R et al (2006) Targeted antioxidative and neuroprotective properties of the dopamine agonist pramipexole and its nondopaminergic enantiomer SND919CL2x [(+)2-Amino-4,5,6,7-Tetrahydro-6-Lpropylamino-Benzathiazole dihydrochloride]. J Pharmacol Exp Ther 316(1):189–199

    Article  CAS  PubMed  Google Scholar 

  • DeFeudis F, Drieu K (2000) Ginkgo biloba extract (EGb 761) and CNS functions: basic studies and clinical applications. Curr Drug Targets 1(1):25–58

    Article  CAS  PubMed  Google Scholar 

  • Dickson DW (1997) The pathogenesis of senile plaques. J Neuropathol Exp Neurol 56(4):321–339

    Article  CAS  PubMed  Google Scholar 

  • Donepezil Monograph for Professionals - Drugs.Com. https://www.drugs.com/monograph/donepezil.html. Accessed 11 Feb 2023

  • Donepezil, Oral Tablet. https://www.healthline.com/health/drugs/donepezil-oral-tablet. Accessed 11 Feb 2023

  • Dong R et al (2018) Meta-analysis of vitamin C, vitamin E and β-carotene levels in the plasma of Alzheimer’s Disease patients. J Hyg Res 47(4):648–654

    Google Scholar 

  • Dragicevic N et al (2012) Caffeine increases mitochondrial function and blocks melatonin signaling to mitochondria in Alzheimer’s mice and cells. Neuropharmacology 63(8):1368–1379

    Article  CAS  PubMed  Google Scholar 

  • Drug Approval Package: Namenda (Memantine HCI) NDA #021487. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/21-487_namenda.cfm. Accessed 11 Feb 2023

  • Drug Approval Package: Razadyne (Galantamine Hydrobromide) ER (Formerly Reminyl) NDA #021615. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2004/021615s000_RazadyneTOC.cfm. Accessed 11 Feb 2023

  • Duan S et al (2015) Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: a dual-target drug for the treatment of Alzheimer’s Disease. Neurobiol Aging 36(5):1792–1807

    Article  CAS  PubMed  Google Scholar 

  • Dumont M et al (2011) Coenzyme Q10 decreases amyloid pathology and improves behavior in a transgenic mouse model of Alzheimer’s Disease. J Alzheimer’s Dis 27(1):211

    Article  CAS  Google Scholar 

  • Farías JG et al (2016) Pharmacological models and approaches for pathophysiological conditions associated with hypoxia and oxidative stress. Pharmacol Ther 158:1–23

    Article  PubMed  Google Scholar 

  • Farzaei MH et al (2018) Curcumin in liver diseases: a systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients 10(7):855

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng Y, Wang X (2012) Antioxidant therapies for Alzheimer’s disease. Oxid Med Cell Longev 2012:472932

    Article  PubMed  PubMed Central  Google Scholar 

  • Figueroa-Méndez R, Rivas-Arancibia S (2015) Vitamin C in health and disease: its role in the metabolism of cells and redox state in the brain. Front Physiol 6:397

    Article  PubMed  PubMed Central  Google Scholar 

  • Francis PT (2005) The interplay of neurotransmitters in Alzheimer’s Disease. CNS Spectr 10(11 Suppl 18):6–9

    Article  PubMed  Google Scholar 

  • Galantamine (Oral Route) Side Effects - Mayo Clinic. https://www.mayoclinic.org/drugs-supplements/galantamine-oral-route/side-effects/drg-20067458?p=1. Accessed 11 Feb 2023

  • Galaris D, Barbouti A, Pantopoulos K (2019) Iron homeostasis and oxidative stress: an intimate relationship. Biochim Biophys Acta - Mol Cell Res 1866(12):118535

    Article  CAS  PubMed  Google Scholar 

  • Gao X et al (2009) Huperzine A protects isolated rat brain mitochondria against beta-amyloid peptide. Free Radic Biol Med 46(11):1454–1462

    Article  CAS  PubMed  Google Scholar 

  • Goschorska M et al (2019) Influence of acetylcholinesterase inhibitors used in Alzheimer’s Disease treatment on the activity of antioxidant enzymes and the concentration of glutathione in thp-1 macrophages under fluoride-induced oxidative stress. Int J Environ Res Public Health 16(1):10

    Article  CAS  Google Scholar 

  • Han X et al (2021) Quercetin hinders microglial activation to alleviate neurotoxicity via the interplay between NLRP3 inflammasome and mitophagy. Redox Biol 44:102010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He H, Dong W, Huang F (2010) Anti-Amyloidogenic and anti-apoptotic role of melatonin in Alzheimer Disease. Curr Neuropharmacol 8(3):211–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hortigón-Vinagre MP et al (2011) Inhibition by 4-Hydroxynonenal (HNE) of Ca2+ transport by SERCA1a: low concentrations of HNE open protein-mediated leaks in the membrane. Free Radic Biol Med 50(2):323–336

    Article  PubMed  Google Scholar 

  • Hsu YY, Tseng YT, Lo YC (2013) Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-Related neurite outgrowth. Toxicol Appl Pharmacol 272(3):787–796

    Article  CAS  PubMed  Google Scholar 

  • Huang X et al (2019) Neuroprotective effects of ginseng phytochemicals: recent perspectives. Molecules 24(16):2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang S, Lim JW, Kim H (2017) Inhibitory effect of lycopene on Amyloid-β-Induced apoptosis in neuronal cells. Nutrients 9(8):883

    Article  PubMed  PubMed Central  Google Scholar 

  • Issac PK et al (2021) Oxidative stress induced antioxidant and neurotoxicity demonstrated in vivo zebrafish embryo or larval model and their normalization due to morin showing therapeutic implications. Life Sci 283:119864

    Article  CAS  PubMed  Google Scholar 

  • Janicki SC, Schupf N (2010) Hormonal influences on cognition and risk for Alzheimer’s Disease. Curr Neurol Neurosci Rep 10(5):359–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamat PK et al (2016) Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s Disease: understanding the therapeutics strategies. Mol Neurobiol 53(1):648–661

    Article  CAS  PubMed  Google Scholar 

  • Kassab RB et al (2017) The effects of berberine on reactive oxygen species production in human neutrophils and in cell-free assays. Interdiscip Toxicol 10(2):61–65

    Article  CAS  PubMed  Google Scholar 

  • Kimura AM et al (2021) Myricetin prevents high molecular weight Aβ1-42 oligomer-induced neurotoxicity through antioxidant effects in cell membranes and mitochondria. Free Radic Biol Med 171:232–244

    Article  CAS  PubMed  Google Scholar 

  • Kishi T et al (2017) Memantine for Alzheimer’s disease: an updated systematic review and meta-analysis. J Alzheimer’s Dis 60(2):401–425. https://doi.org/10.3233/JAD-170424

    Article  CAS  Google Scholar 

  • Kobayashi M, Yamamoto M (2005) Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid Redox Signal 7(3–4):385–394

    Article  CAS  PubMed  Google Scholar 

  • Kumar V (2006) Potential medicinal plants for CNS disorders: an overview. Phytother Res 20(12):1023–1035. https://doi.org/10.1002/ptr.1970

    Article  CAS  PubMed  Google Scholar 

  • Kunkle BW et al (2019) Genetic meta-analysis of diagnosed Alzheimer’s Disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet 51(3):414–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KH, Cha M, Lee BH (2020) Neuroprotective effect of antioxidants in the brain. Int J Mol Sci 21(19):1–29

    Article  Google Scholar 

  • Li B et al (2013) Sodium arsenite induced reactive oxygen species generation, nuclear factor (Erythroid-2 Related) factor 2 activation, heme Oxygenase-1 expression, and glutathione elevation in chang human hepatocytes. Environ Toxicol 28(7):401–410

    Article  CAS  PubMed  Google Scholar 

  • Li X-L et al (2014) “Behavioral and psychological symptoms in Alzheimer’s disease. Biomed Res Int. https://doi.org/10.1155/2014/927804

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Montine KS, Dirk Keene C, Montine TJ (2015) Different mechanisms of apolipoprotein E isoform-dependent modulation of prostaglandin E2 production and triggering receptor expressed on myeloid cells 2 (TREM2) expression after innate immune activation of microglia. FASEB J: off Publ Fed Am Soc Exp Biol 29(5):1754–1762

    Article  CAS  Google Scholar 

  • Li H et al (2016) Neuroprotective effects of ginseng protein on PI3K/Akt signaling pathway in the hippocampus of D-Galactose/AlCl3 inducing rats model of Alzheimer’s Disease. J Ethnopharmacol 179:162–169

    Article  CAS  PubMed  Google Scholar 

  • Li S et al (2021) Curcumin ameliorates mercuric chloride-induced liver injury via modulating cytochrome P450 signaling and Nrf2/HO-1 pathway. Ecotoxicol Environ Safety 208:111426

    Article  CAS  PubMed  Google Scholar 

  • Liao X, Yang C, Lin H, Li B (2021) Quenching effects of (-)-Epigallocatechin gallate for singlet oxygen production and its protection against oxidative damage induced by ce6-mediated photodynamic therapy in vitro. Photodiagnosis Photodyn Ther 36:102467

    Article  CAS  PubMed  Google Scholar 

  • Loef M, Schrauzer GN, Walach H (2011) Selenium and Alzheimer’s disease: a systematic review. J Alzheimer’s Dis: JAD 26(1):81–104

    Article  CAS  PubMed  Google Scholar 

  • Maki PM, Girard LM, Manson JAE (2019) Menopausal hormone therapy and cognition. BMJ (clin Res Ed) 364:I877

    Google Scholar 

  • Manda G et al (2020) Nordihydroguaiaretic acid: from herbal medicine to clinical development for cancer and chronic diseases. Front Pharmacol 11:151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manochkumar J et al (2021) The neuroprotective potential of carotenoids in vitro and in vivo. Phytomed: Int J Phytother Phytopharmacol 91:153676

    Article  CAS  Google Scholar 

  • Mawuenyega KG et al (2010) Decreased clearance of CNS beta-amyloid in Alzheimer’s Disease. Science (new York, NY) 330(6012):1774

    Article  CAS  Google Scholar 

  • Mcmanus MJ, Murphy MP, Franklin JL (2011) The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s Disease. J Neurosci 31(44):15703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo JB et al (2009) Galantamine protects against oxidative stress induced by amyloid-beta peptide in cortical neurons. Eur J Neurosci 29(3):455–464

    Article  PubMed  Google Scholar 

  • Mitchell W et al (2020) The mitochondria-targeted peptide SS-31 binds lipid bilayers and modulates surface electrostatics as a key component of its mechanism of action. J Biol Chem 295(21):7452–7469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortality and Global Health Estimates. https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates. Accessed 19 Jan 2022

  • Moussa C et al (2017) Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s Disease. J Neuroinflammation. https://doi.org/10.1186/s12974-016-0779-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukherjee PK, Kumar V, Mal M, Houghton PJ (2007) Acetylcholinesterase inhibitors from plants. Phytomed: Int J Phytother Phytopharmacol 14(4):289–300

    Article  CAS  Google Scholar 

  • Murakami K et al (2011) Vitamin C restores behavioral deficits and Amyloid-β oligomerization without affecting plaque formation in a mouse model of Alzheimer’s Disease. J Alzheimer’s Dis: JAD 26(1):7–18

    Article  CAS  PubMed  Google Scholar 

  • Neely MD, Sidell KR, Graham DG, Montine TJ (1999) The lipid peroxidation product 4-Hydroxynonenal inhibits neurite outgrowth, disrupts neuronal microtubules, and modifies cellular tubulin. J Neurochem 72(6):2323–2333

    Article  CAS  PubMed  Google Scholar 

  • Niki E (2014) Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Rad Biol Med 66:3–12

    Article  CAS  PubMed  Google Scholar 

  • Nous A, Engelborghs S, Smolders I (2021) Melatonin levels in the Alzheimer’s Disease continuum: a systematic review. Alzheimer’s Res Ther 13(1):52

    Article  Google Scholar 

  • Ono K, Hamaguchi T, Naiki H, Yamada M (2006) Anti-Amyloidogenic effects of antioxidants: implications for the prevention and therapeutics of Alzheimer’s Disease. Biochim Biophys Acta Mol Basis Dis 1762(6):575–586

    Article  CAS  Google Scholar 

  • Pan X et al (2020) Antioxidant, anti-inflammatory and neuroprotective effect of Kaempferol on rotenone-induced Parkinson’s Disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. J Funct Foods 74:104140

    Article  CAS  Google Scholar 

  • Parle M, Dhingra D (2003) Ascorbic acid: a promising memory-enhancer in mice. J Pharmacol Sci 93(2):129–135

    Article  CAS  PubMed  Google Scholar 

  • Parsons CG, Danysz W, Dekundy A, Pulte I (2013) Memantine and cholinesterase inhibitors: complementary mechanisms in the treatment of Alzheimer’s Disease. Neurotox Res 24(3):358–369. https://doi.org/10.1007/s12640-013-9398-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel BN et al (2002) Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J Neurosci 22(15):6578–6586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peña-Bautista C et al (2019) Oxidative damage of DNA as early marker of Alzheimer’s Disease. Int J Mol Sci 20(24):6136

    Article  PubMed  PubMed Central  Google Scholar 

  • Pennisi M et al (2017) Inflammasomes, hormesis, and antioxidants in neuroinflammation: role of NRLP3 in Alzheimer Disease. J Neurosci Res 95(7):1360–1372

    Article  CAS  PubMed  Google Scholar 

  • Perez SE et al (2017) Neocortical and hippocampal TREM2 protein levels during the progression of Alzheimer’s Disease. Neurobiol Aging 54:133–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prajapati KP et al (2020) Myricetin inhibits amyloid fibril formation of globular proteins by stabilizing the native structures. Colloids Surf B, Biointerfaces 186:110640

    Article  CAS  PubMed  Google Scholar 

  • Quinn J et al (2003) Antioxidants in Alzheimer’s disease-vitamin C delivery to a demanding brain. J Alzheimer’s Dis: JAD 5(4):309–313

    Article  CAS  PubMed  Google Scholar 

  • Rahmani M, Álvarez SEN, Hernández EB (2022) The potential use of tetracyclines in neurodegenerative diseases and the role of nano-based drug delivery systems. Eur J Pharm Sci 175:106237

    Article  CAS  PubMed  Google Scholar 

  • Rauchová H (2021) Coenzyme Q10 effects in neurological diseases. Physiol Res 70:683–714

    Article  Google Scholar 

  • Razay G, Wilcock GK (2008) Galantamine in Alzheimer’s disease. Expert Rev Neurother 8(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Rees TM, Brimijoin S (2003) The role of acetylcholinesterase in the pathogenesis of Alzheimer’s Disease. Drugs Today (barcelona, Spain: 1998) 39(1):75–83

    Article  CAS  Google Scholar 

  • Rice ME (2000) Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci 23(5):209–216

    Article  CAS  PubMed  Google Scholar 

  • Rocha-Ferreira E et al (2019) Curcumin: novel treatment in neonatal hypoxic-ischemic brain injury. Front Physiol 10:1351

    Article  PubMed  PubMed Central  Google Scholar 

  • Rottkamp CA et al (2000) Oxidative stress, antioxidants, and Alzheimer disease. Alzheimer Dis Assoc Disord 14(SUPPL. 1):62–66

    Article  Google Scholar 

  • Santa-Cecília FV, Leite CA, Del-Bel E, Raisman-Vozari R (2019) The neuroprotective effect of doxycycline on neurodegenerative diseases. Neurotox Res 35(4):981–986

    Article  PubMed  Google Scholar 

  • Sarsour EH, Goswami M, Kalen AL, Goswami PC (2010) MnSOD activity protects mitochondrial morphology of quiescent fibroblasts from age associated abnormalities. Mitochondrion 10(4):342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh T, McKercher SR, Lipton SA (2013) Nrf2/ARE-mediated antioxidant actions of pro-electrophilic drugs. Free Radic Biol Med 65:645–657

    Article  CAS  PubMed  Google Scholar 

  • Schrag M et al (2013) Oxidative stress in blood in Alzheimer’s disease and mild cognitive impairment: a meta-analysis. Neurobiol Dis 59:100–110

    Article  CAS  PubMed  Google Scholar 

  • Schuessel K et al (2006) Aging sensitizes toward ROS formation and lipid peroxidation in PS1M146L transgenic mice. Free Radic Biol Med 40(5):850–862

    Article  CAS  PubMed  Google Scholar 

  • Shen J et al (2021) Ascorbate oxidation by iron, copper and reactive oxygen species review, model development, and derivation of key rate constants. Sci Rep 11(1):1–14

    Google Scholar 

  • Shi C et al (2009) Protective effects of ginkgo biloba extract (EGb761) and its constituents quercetin and ginkgolide b against beta-amyloid peptide-induced toxicity in SH-SY5Y cells. Chemico-Biol Interact 181(1):115–123

    Article  CAS  Google Scholar 

  • Shinto L et al (2014) A randomized placebo-controlled pilot trial of omega-3 fatty acids and alpha lipoic acid in Alzheimer’s disease. J Alzheimer’s Dis: JAD 38(1):111–120

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MH et al (2020) Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. J Hazard Mater 398:122882

    Article  CAS  PubMed  Google Scholar 

  • Singh E, Devasahayam G (2020) Neurodegeneration by oxidative stress: a review on prospective use of small molecules for neuroprotection. Mol Biol Rep 47(4):3133–3140

    Article  CAS  PubMed  Google Scholar 

  • Squitti R et al (2006) Ceruloplasmin (2-D PAGE) pattern and copper content in serum and brain of Alzheimer Disease patients. Biomark Insights 1:205–213

    Article  Google Scholar 

  • Suganthy N, Devi KP (2016) Protective effect of catechin rich extract of Rhizophora mucronata against & beta amyloid-induced toxicity in cells. J Appl Biomed 14(2):137–146. https://doi.org/10.1016/j.jab.2015.10.003

    Article  Google Scholar 

  • Suh GH et al (2004) A prospective, double-blind, community-controlled comparison of three doses of galantamine in the treatment of mild to moderate alzheimer’s disease in a korean population. Clin Therapeutics 26(10):1608–1618

    Article  CAS  Google Scholar 

  • Sumsuzzman DM, Choi J, Jin Y, Hong Y (2021) Neurocognitive effects of melatonin treatment in healthy adults and individuals with Alzheimer’s Disease and insomnia: a systematic review and meta-analysis of randomized controlled trials. Neurosci Biobehav Rev 127:459–473

    Article  CAS  PubMed  Google Scholar 

  • Swallah MS et al (2020) Antioxidant potential overviews of secondary metabolites (Polyphenols) in fruits. Int J Food Sci. https://doi.org/10.1155/2020/9081686

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanigawa S, Fujii M, Hou DX (2007) Action of Nrf2 and Keap1 in ARE-Mediated NQO1 expression by quercetin. Free Radic Biol Med 42(11):1690–1703

    Article  CAS  PubMed  Google Scholar 

  • Tiffany-Castiglioni E, Hong S, Qian Y (2011) Copper handling by astrocytes: insights into neurodegenerative diseases. Int J Dev Neurosci 29(8):811–818. https://doi.org/10.1016/j.ijdevneu.2011.09.004

    Article  CAS  PubMed  Google Scholar 

  • Ton AMM et al (2020) Oxidative stress and dementia in Alzheimer’s patients: effects of synbiotic supplementation. Oxid Med Cell Longev

  • Tong KI et al (2006) Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol 26(8):2887–2900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Travica N et al (2017) Vitamin C status and cognitive function: a systematic review. Nutrients 9(9):1–21

    Article  Google Scholar 

  • Tsvetkova D, Obreshkova D, Zheleva-Dimitrova D, Saso L (2013) Antioxidant activity of galantamine and some of its derivatives. Curr Med Chem 20(36):4595–4608

    Article  CAS  PubMed  Google Scholar 

  • Tumer TB et al (2018) GR24, a synthetic analog of strigolactones, alleviates inflammation and promotes Nrf2 cytoprotective response: in vitro and in silico evidences. Comput Biol Chem 76:179–190

    Article  CAS  PubMed  Google Scholar 

  • Voulgaropoulou SD, van Amelsvoort TA, Prickaerts J, Vingerhoets C (2019) The effect of curcumin on cognition in Alzheimer’s disease and healthy aging: a systematic review of pre-clinical and clinical studies. Brain Res 1725:146476

    Article  CAS  PubMed  Google Scholar 

  • Wadsworth TL et al (2008) Evaluation of coenzyme Q as an antioxidant strategy for Alzheimer’s disease. J Alzheimer’s Dis: JAD 14(2):225–234

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Zhang HY, Tang XC (2001) Huperzine A attenuates cognitive dysfunction and neuronal degeneration caused by beta-amyloid protein-(1–40) in rat. Eur J Pharmacol 421(3):149–156

    Article  CAS  PubMed  Google Scholar 

  • Wang YY et al (2017) Meta-analysis of randomized, double-blind, placebo-controlled trials of melatonin in Alzheimer’s disease. Int J Geriatr Psychiatry 32(1):50–57

    Article  PubMed  Google Scholar 

  • Weinreb O, Amit T, Bar-Am O, Youdim MBH (2012) Ladostigil: a novel multimodal neuroprotective drug with cholinesterase and brain-selective monoamine oxidase inhibitory activities for Alzheimer’s disease treatment. Curr Drug Targets 13(4):483–494

    Article  CAS  PubMed  Google Scholar 

  • Williams MD et al (1998) Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice. J Biol Chem 273(43):28510–28515

    Article  CAS  PubMed  Google Scholar 

  • Winblad B et al (2007) IDEAL. Neurology 69(4 suppl 1):S14-22

    Article  CAS  PubMed  Google Scholar 

  • Witting PK, Upston JM, Stocker R (1997) Role of alpha-tocopheroxyl radical in the initiation of lipid peroxidation in human low-density lipoprotein exposed to horse radish peroxidase. Biochemistry 36(6):1251–1258

    Article  CAS  PubMed  Google Scholar 

  • Xiao M, Xiao D (2012) Editorial open access gugulipid, an extract of ayurveda medicine plant commiphora mukul as a potent agent for cancer chemoprevention and cancer chemotherapy. Med Chem. https://doi.org/10.4172/2161-0444.1000125

    Article  Google Scholar 

  • Xuan RR, Niu TT, Chen HM (2016) Astaxanthin Blocks Preeclampsia Progression by Suppressing Oxidative Stress and Inflammation. Mol Med Rep 14(3):2697–2704

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi R, Kato K, Ueno Y (2002) Free-radical scavenging reactions of alpha.-tocopherol during the autoxidation of methyl linoleate in bulk phase. J Agric Food Chem 43(6):1455–1461. https://doi.org/10.1021/jf00054a008

    Article  Google Scholar 

  • Yang C et al (2017) Bioaccessibility, cellular uptake and transport of luteins and assessment of their antioxidant activities. Food Chem 249:66–76

    Article  PubMed  Google Scholar 

  • Zhang ZH, Song GL (2021) Roles of selenoproteins in brain function and the potential mechanism of selenium in Alzheimer’s Disease. Front Neurosci 15:215

    Google Scholar 

  • Zhang X et al (2016) Quercetin stabilizes apolipoprotein E and reduces brain Aβ levels in amyloid model mice. Neuropharmacology 108:179–192

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Reyes A, Zhang XW, Wang X (2018) The role of mitochondria-targeted antioxidant MitoQ in neurodegenerative disease. Mol Cell Ther 6:1–8

    Article  Google Scholar 

  • Zhang S et al (2020) The pharmacological activity of Epigallocatechin-3-Gallate (EGCG) on Alzheimer’s disease animal model: a systematic review. Phytomed: Int J Phytother Phytopharmacol 79:153316

    Article  CAS  Google Scholar 

  • Zhang T et al (2021) ATP exposure stimulates glutathione efflux as a necessary switch for NLRP3 inflammasome activation. Redox Biol 41:101930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao B et al (2017) Supplementation of lycopene attenuates oxidative stress induced neuroinflammation and cognitive impairment via Nrf2/NF-ΚB transcriptional pathway. Food Chem Toxicol: Int J Publ Br Ind Biol Res Assoc 109(Pt 1):505–516

    Article  CAS  Google Scholar 

  • Zhou X et al (2013) NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors. Cell Death Dis 4(3):e560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L et al (2018) Protective role of β-Carotene against oxidative stress and neuroinflammation in a rat model of spinal cord injury. Int Immunopharmacol 61:92–99

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SD and ES. The first draft of the manuscript was written by SD and ES and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sonal Dubey.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, S., Singh, E. Antioxidants: an approach for restricting oxidative stress induced neurodegeneration in Alzheimer’s disease. Inflammopharmacol 31, 717–730 (2023). https://doi.org/10.1007/s10787-023-01173-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01173-5

Keywords

Navigation