Skip to main content
Log in

Review on Polarization Selective Terahertz Metamaterials: from Chiral Metamaterials to Stereometamaterials

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In this article, recent progress and development of terahertz chiral metamaterials including stereometamaterials are thoroughly reviewed. This review mainly focuses on the fundamental principles of design and arrangement of meta-atoms in metamaterials exhibiting chirality with various asymmetry and symmetry and 2D and 3D configuration. Related optical and propagation properties in chiral metamaterials, such as optical activity, circular dichroism, and negative refraction for each different chiral metamaterials, are compared and investigated. Finally, comparison between chiral metamaterials with stereometamaterials in terms of the polarization selective operation along with the similarity and the distinction is addressed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. V. G. Vesalago, Sov. Phys. Usp. 10 509–514 (1968)

    Article  Google Scholar 

  2. J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs, Phys. Rev. Lett. 76, (25) 4773–4776 (1996)

    Article  Google Scholar 

  3. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001)

    Article  Google Scholar 

  4. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007)

    Article  Google Scholar 

  5. W. Cai, U. K. Chettiar, A. V. Kidilshev, and V. M. Shalaev, Nat. Photon. 1, 224 (2007)

    Article  Google Scholar 

  6. D. Schuring, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006)

    Article  Google Scholar 

  7. Y. Liu and X. Zhang, Chem. Soc. Rev. 40, 2494 (2001)

    Article  Google Scholar 

  8. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008)

    Article  Google Scholar 

  9. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microw. Theory and Techn. 47(11), 2075 (1999).

    Article  Google Scholar 

  10. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, Phys. Med. Biol., 47, 3853 (2002)

    Article  Google Scholar 

  11. N. Nagai, M. Sumitomo, M. Imaizumi, M. Imaizumi, and R. Fukasawa, Semicond. Sci. Technol. 21, 201 (2006)

    Article  Google Scholar 

  12. N. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, Biophys. J., 94, 1010 (2008)

    Article  Google Scholar 

  13. J. H. Son, Terahertz Biomedical Science and Technology, CRC Press, Boca Raton, (2014)

    Book  Google Scholar 

  14. S. E. Whitmire, D. Wolpert, A. G. Markelz, J. R. Hillebrecht, J. Galan, and R. R. Birge, Biophys. J. 85, 1269 (2003).

    Article  Google Scholar 

  15. M. Nagel, P. H. Bolivar, M. Brucherseifer, H. Kurz, A. Bosserhoff, and R. Buttner,, Appl. Phys. Lett. 80, 154 (2001).

    Article  Google Scholar 

  16. J. W. Waters et al.,, IEEE Trans. Geosci. Remote Sens. 44(5), 1075 (2006).

    Article  Google Scholar 

  17. R. Appleby, IEEE Trans. Antennas Propag. 55(11), 2944 (2007).

    Article  Google Scholar 

  18. S. Balci, W. Baughman, D.S. Wilbert, G. Shen, P. Kung, S. M. Kim, Solid. State. Electron. 78, 68 (2012).

    Article  Google Scholar 

  19. J. D. Baena, R. Marques, F. Medina, and J. Martel,, Phys. Rev. B 69, 014402 (2004).

    Article  Google Scholar 

  20. J. Valentine, S. Zhang, T. Zentgraf, E. U. Avila, D. A. Genov, G. Bartal, and X. Zhang,, Nature 455, 376 (2008).

    Article  Google Scholar 

  21. I. Bulu, H. Caglayan, and E. Ozbay,, Opt. Express 13(25), 10238 (2005).

    Article  Google Scholar 

  22. D. Schurig, J. J. Mock, and D. R. Smith, Appl. Phys. Lett. 88, 041109 (2006).

    Article  Google Scholar 

  23. J. Hunt, T. Driscoll, A. Mrozack, G. Lipworth, M. Reynolds, D. Brady, and D. R. Smith, 339(6117), 310 (2013).

  24. X. Zhang, and Z. Liu, Nature Mater. 7, 435 (2008).

    Article  Google Scholar 

  25. N. Landy, and D. R. Smith, Nature Mater. 12, 435 (2013).

    Google Scholar 

  26. E. E. Narimanov, and A. V. Kildishev, Appl. Phys, Lett. 95, 041106 (2009).

    Article  Google Scholar 

  27. B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis,, J. Opt. A. Pure Appl. Opt. 11 114003 (2009)

    Article  Google Scholar 

  28. J. Li, M. Mutlu, E. Ozbay,, J. Opt. 15, 023001 (2013)

    Article  Google Scholar 

  29. G. Kenanakis, E. N. Economou, C. M. Soutoulis, M. Kafesaki, EPJ Appl. Metamat. 2,15 (2015)

    Article  Google Scholar 

  30. Y. Q. Ye, D. Hay, and Z. M. Shi, Optics Letters, vol. 41, pp. 3359–3362 (2016).

    Article  Google Scholar 

  31. K. K. Xu, Z. Y. Xiao, J. Y. Tang, D. J. Liu, X. L. Ma, and Z. H. Wang, Plasmonics, vol. 11, pp. 1257–1264 (2016).

    Article  Google Scholar 

  32. A. Sonsilphong, P. Gutruf, W. Withayachumnankul, D. Abbott, M. Bhaskaran, S. Sriram, et al., J of Opt. vol. 17, (2015).

  33. Z. Ozer, F. Dincer, M. Karaaslan, and O. Akgol, Optical Engineering, vol. 53 (2014).

  34. Y. Li, Q. Huang, D. C. Wang, X. Li, M. H. Hong, and X. G. Luo, Applied Physics a-Materials Science & Processing, vol. 115, pp. 57–62, (2014).

    Article  Google Scholar 

  35. S. V. Zhukovsky, D. N. Chigrin, C. Kremers, and A. V. Lavrinenko, Photonics and Nanostructures-Fundamentals and Applications, vol. 11, pp. 353–361, (2013).

    Google Scholar 

  36. J. F. Zhou, D. R. Chowdhury, R. K. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. Taylor, J. F. O’Hara, Phys. Rev. B 86, 035448 (2012).

    Article  Google Scholar 

  37. Y. B. Ding, G. P. Zhang, and Y. Z. Cheng, Physica Scripta, vol. 85, (2012).

  38. M. X. He, J. G. Han, Z. Tian, J. Q. Gu, and Q. R. Xing Optik, 122, pp. 1676–1679 (2011).

  39. S. Waselikowski, K. Kratt, V. Badilita, U. Wallrabe, J. G. Korvink, and M. Walther, Appl. Phys. Lett. 97 (2010).

  40. J. F. Wu, B. H. Ng, S. P. Turaga, M. B. H. Breese, S. A. Maier, M. H. Hong A. Bettiol, H. O. Moser, Applied Physics Letters, vol. 103 (2013).

  41. J. Wu, B. Ng, H. Liang, M. B. H. Breese, M. Hong, S. A. Maier, H. O. Moser, and O. Hess, Phys. Rev. Appl. 2, pp. 1–8 (2014).

    Google Scholar 

  42. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, Phys. Rev.B 80, 153105 (2009)

    Article  Google Scholar 

  43. N. Wongkasem, A. Akyurtlu, K. A. Marx, Q. Dong, J. Li, and W. D. Goodhue, IEEE Trans. Antennas Propag., vol. 55, no. 11 I, pp. 3052–3062, (2007).

    Article  Google Scholar 

  44. M. Zalkovskij, R. Malureanu, C. Kremers, D. N. Chigrin, A. Novitsky, S. Zhukovsky, et al., Laser & Photonics Reviews, vol. 7, pp. 810–817 (2013).

    Article  Google Scholar 

  45. N. Kanda, K. Konishi, and M. Kuwata-Gonokami, Optics Letters, vol. 37, pp. 3510–3512 (2012).

    Article  Google Scholar 

  46. N. Yogesh, T. Fu, F. Lan, and Z. Ouyang, IEEE Photonics J., vol. 7, no. 3, (2015).

  47. J. Tang, Z. Xiao, K. Xu, X. Ma, D. Liu, and Z. Wang, Opt. Quantum Electron., vol. 48, no. 2, p. 111, (2016)

    Article  Google Scholar 

  48. Y. Huang, Z. Yao, Q. Wang, F. Hu, and X. Xu, Plasmonics, vol. 10, no. 4, pp. 1005–1011, (2015.)

    Article  Google Scholar 

  49. T. Cao, C. Wei, Y. Li, Dual-band strong extrinsic 2D chirality in a highly symmetric metal-dielectric-metal achiral metasurface. Optical Materials Express 6(2), 303–311 (2016).

  50. N. Kanda, K. Konishi, and M. Kuwata-Gonokami, Opt. Express, vol. 15, no. 18, pp. 11117 (2007).

    Article  Google Scholar 

  51. N. Kanda, K. Konishi, and M. Kuwata-Gonokami, Opt. Lett., vol. 34, no. 19, pp. 3000 (2009).

    Article  Google Scholar 

  52. G. Kenanakis, R. Zhao, N. Katsarakis, M. Kafesaki, C. M. Soukoulis, and E. N. Economou, Opt. Express, vol. 22, no. 10, pp. 12149–59, (2014).

    Article  Google Scholar 

  53. J. B. Pendry, Science, 306 1353 (2004)

    Article  Google Scholar 

  54. S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, J. Electromagn. Waves Appl. 17 695–706 (2003)

    Article  Google Scholar 

  55. S. Tretyakov, A. Sihvola and L. Jylha, Photon. Nanostruct. Fundam. Appl. 3 107–15 (2005)

    Article  Google Scholar 

  56. C. Monzon and D.W. Forester, 2005Phys. Rev. Lett. 95 123904 (2005)

    Article  Google Scholar 

  57. N. Liu, H. Liu, S. Zhu, and H. Giessen, Nature Photon. 3, 157 (2009).

    Article  Google Scholar 

  58. C. Tang, Q. Wang, F. Liu, Z. Chen, and Z. Wang, Opt. Express 21(10), 11783 (2013).

    Article  Google Scholar 

  59. M.P. Hokmabadi, D.S. Wilbert, P. Kung, and S.M. Kim, Phys. Rev. Applied 1, 044003 (2014).

    Article  Google Scholar 

  60. M. P. Hokmabadi, D. S. Wilbert, P. Kung, and S. M. Kim, Proc. SPIE 8632, (2013).

  61. M. P. Hokmabadi, D. S. Shawn, P Kung, S. M. Kim, Opt. Express 21(14), 16455 (2013).

    Article  Google Scholar 

  62. D. S. Wilbert, M. P. Hokmabadi, J. Martinez, P. Kung, and S. M. Kim, Proc. SPIE, 8585 (2013).

  63. N. I. Zheludev, and Y. S. Kivshar, Nature Mater. 11, 917 (2012).

    Article  Google Scholar 

  64. R. Zhao, P Tassin, T. Koschny, and C. M. Souloulis, Opt. Express 18(25), 25665 (2010).

    Article  Google Scholar 

  65. V. Ginis, P. Tassin, C. M. Soukoulis, and I. Veretennicoff, Phys. Rev. Lett. 110, 057401–1 (2013).

    Article  Google Scholar 

  66. F. J. Rodroguez-Fortuno, A. Vakil, and Nader Engheta, Phys. Rev. Lett. 112, 033902–1 (2014).

    Article  Google Scholar 

  67. Z. J. Wang, F. Cheng, T. Winsor, and Y. M. Liu, Nanotechnol., 27, 412001 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seongsin Margaret Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Philip, E., Zeki Güngördü, M., Pal, S. et al. Review on Polarization Selective Terahertz Metamaterials: from Chiral Metamaterials to Stereometamaterials. J Infrared Milli Terahz Waves 38, 1047–1066 (2017). https://doi.org/10.1007/s10762-017-0405-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-017-0405-y

Keywords

Navigation