Skip to main content
Log in

Dispersionless and Giant Optical Activity in Terahertz Chiral Metamaterials

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we propose a new structure which is achieved via the combination of twist conjugated gammadion and four-L resonators pairs. The proposed chiral metamaterial can achieve dispersionless and giant optical activity simultaneously. The polarization ellipticity is lower than 0.46° through all function bands, and the polarization azimuth rotation angle is larger than 90.3° from 2.37 to 2.69 THz. Specifically, the structure can achieve 90° dispersionless polarization rotation at f = 2.57 THz. The optical activity is optimized through changing the parameters of the chiral structure and the physical mechanism is also analyzed based on surface current distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lindell IV, Sihvola AH, Tretyakov SA et al (1994) Electromagnetic waves in chiral and bi-isotropic media. Artech House Publishers, Boston

    Google Scholar 

  2. Applequist J (1987) Optical activity: Biot’s bequest. Am Sci 75:58–68

    Google Scholar 

  3. Barron LD (2004) Molecular light scattering and optical activity, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  4. Pendry JB (2004) A chiral route to negative refraction. Science 306(5700):1353–1355

    Article  CAS  Google Scholar 

  5. Plum E, Zhou J, Dong J et al (2009) Metamaterial with negative index due to chirality. Phys Rev B 79(3):035407

    Article  Google Scholar 

  6. Li Z, Alici KB, Caglayan H et al (2012) Composite chiral metamaterials with negative refractive index and high values of the figure of merit. Opt Express 20(6):6146–6156

    Article  Google Scholar 

  7. Saba M, Thiel M, Turner MD  et al (2011) Circular dichroism in biological photonic crystals and cubic chiral nets. Phys Rev Lett 106(10):103902

    Article  CAS  Google Scholar 

  8. Kwon D-H, Werner PL, Werner DH et al (2008) Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation. Opt Express 16(16):11802–11807

    Article  CAS  Google Scholar 

  9. Narushima T, Okamoto H (2013) Strong nanoscale optical activity localized in two-dimensional chiral metal nanostructures. J Phys Chem C 117(45):23964–23969

    Article  CAS  Google Scholar 

  10. Liu D-J, Xiao Z-Y, Ma X-L et al (2015) Dual-band asymmetric transmission of chiral metamaterial based on complementary U-shaped structure. Appl Phys A 118(3):787–791

    Article  CAS  Google Scholar 

  11. Kenanakis G, Xomalis A, Selimis A  et al (2015) Three-dimensional infrared metamaterial with asymmetric transmission. ACS Photon 2(2):287–294

    Article  CAS  Google Scholar 

  12. Xiao Z-Y, Liu D-J, Ma X-L et al (2015) Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators. Opt Express 23(6):7053–7061

    Article  Google Scholar 

  13. Zhao R, Zhou J, Koschny T et al (2009) Repulsive Casimir force in chiral metamaterials. Phys Rev Lett 103(10):103602

    Article  CAS  Google Scholar 

  14. Zhao R, Koschny T, Economou EN et al (2011) Repulsive Casimir forces with finite-thickness slab. Phys Rev B 83(7):075108

    Article  Google Scholar 

  15. Decker M, Ruther M, Kriegler CE et al (2009) Strong optical activity from twisted-cross photonic metamaterials. Opt Lett 34(16):2501–2503

    Article  CAS  Google Scholar 

  16. Zhao Y, Belkin M, Alu A (2012) Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat Commun 3:870

    Article  CAS  Google Scholar 

  17. Wei Z, Cao Y, Fan Y et al (2011) Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators. Appl Phys Lett 99(22):221907

    Article  Google Scholar 

  18. Ye Y, He S (2010) 90° polarization rotator using a bilayered chiral metamaterial with giant optical activity. Appl Phys Lett 96(20):203501

    Article  Google Scholar 

  19. Hannam K, Powell DA, Shadrivov IV et al (2013) Dispersionless optical activity in metamaterials. Appl Phys Lett 102(20):201121

    Article  Google Scholar 

  20. Sabah C, Roskos HG (2012) Design of a terahertz polarization rotator based on a periodic sequence of chiral-metamaterial and dielectric slabs. Prog Electromagn Res 124:301–314

    Article  Google Scholar 

  21. Cong L, Cao W, Zhang X et al (2013) A perfect metamaterial polarization rotator. Appl Phys Lett 103(17):171107

    Article  Google Scholar 

  22. Kanda N, Konishi K, Kuwata-Gonokami M (2007) Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns. Opt Express 15(18):11117–11125

    Article  CAS  Google Scholar 

  23. Menzel C, Rockstuhl C, Lederer F (2010) Advanced Jones calculus for the classification of periodic metamaterials. Phys Rev A 82(5):053811

    Article  Google Scholar 

  24. Zhou J, Dong J, Wang B et al (2009) Negative refractive index due to chirality. Phys Rev B 79(12):121104

    Article  Google Scholar 

  25. Wang B, Zhou J, Koschny T et al (2009) Chiral metamaterials: simulations and experiments. J Opt A Pure Appl Opt 11(11):114003

    Article  Google Scholar 

  26. Atkins PW (1992) The elements of physical chemistry. Oxford University Press, New York

    Google Scholar 

  27. Linden S, Enkrich C, Wegener M et al (2004) Magnetic response of metamaterials at 100 terahertz. Science 306:1351

    Article  CAS  Google Scholar 

  28. Liu N, Guo H, Fu L. et al (2007) Plasmon hybridization in stacked cut-wire metamaterials. Adv Mater 19(21):3628–3632

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 61275070) and Shanghai Natural Science Foundation (Grant No. 15ZR1415900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-yin Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Kk., Xiao, Zy., Tang, Jy. et al. Dispersionless and Giant Optical Activity in Terahertz Chiral Metamaterials. Plasmonics 11, 1257–1264 (2016). https://doi.org/10.1007/s11468-015-0169-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0169-y

Keywords

Navigation