Skip to main content
Log in

Coupling Tai Chi Chiral Metamaterials with Strong Optical Activity in Terahertz Region

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We demonstrated Tai Chi chiral metamaterials of mirror-symmetric and complementary structures in terahertz (THz) region. We investigated the properties of these structures by calculating the transmissions under different circularly polarization waves and analyzing the surface current distributions. The chiral mirror-symmetric structure has circular dichroism and strong optical activity due to electromagnetic field coupling between layers with sub-wavelength thickness. Moreover, the structures with multiple metallic layers or twist angle between layers can realize chirality tunability, which can be used for THz polarized devices. Besides, the complementary structure has potential applications for polarization-insensitive devices in THz region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kwon D-H, Werner PL, Werner DH (2008) Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation. Opt Express 16(16):11802–11807

    Article  CAS  Google Scholar 

  2. Atkins PW, De Paula J (2005) The elements of physical chemistry. Oxford University Press, New York

    Google Scholar 

  3. Xu X et al (2011) Flexible visible–infrared metamaterials and their applications in highly sensitive chemical and biological sensing. Nano Lett 11(8):3232–3238

    Article  CAS  Google Scholar 

  4. Pendry J (2004) A chiral route to negative refraction. Science 306(5700):1353–1355

    Article  CAS  Google Scholar 

  5. Tretyakov S, Sihvola A, Jylhä L (2005) Backward-wave regime and negative refraction in chiral composites. Photonics Nanostruct Fundam Appl 3(2–3):107–115

    Article  Google Scholar 

  6. Zhang S et al (2009) Negative refractive index in chiral metamaterials. Phys Rev Lett 102(2):023901

    Article  Google Scholar 

  7. Li Z et al (2010) Chiral metamaterials with negative refractive index based on four “U” split ring resonators. Appl Phys Lett 97(8):081901

    Article  Google Scholar 

  8. Li Z et al (2011) Complementary chiral metamaterials with giant optical activity and negative refractive index. Appl Phys Lett 98(16):161907

    Article  Google Scholar 

  9. Bai B et al (2007) Optical activity in planar chiral metamaterials: theoretical study. Phys Rev A 76(2):023811

    Article  Google Scholar 

  10. Cheng YZ et al (2013) Chiral metamaterials with giant optical activity and negative refractive index based on complementary conjugate-swastikas structure. J Electromagn Waves and Appl 27(8):1068–1076

    Article  Google Scholar 

  11. Decker M et al (2007) Circular dichroism of planar chiral magnetic metamaterials. Opt Lett 32(7):856–858

    Article  CAS  Google Scholar 

  12. Plum E et al (2009) Metamaterial with negative index due to chirality. Phys Rev B 79(3):035407

    Article  Google Scholar 

  13. Li Z, Mutlu M, Ozbay E (2013) Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission. J Opt 15(2):023001

    Article  Google Scholar 

  14. Liu Y, Cheng Y, Cheng ZZ (2014) A numerical parameter study of chiral metamaterial based on complementary U-shaped structure in infrared region. Opt-Int J Light Electron Optics 125(3):1316–1319

    Article  CAS  Google Scholar 

  15. Cui Y et al (2014) Giant chiral optical response from a twisted-arc metamaterial. Nano Lett 14(2):1021–1025

    Article  CAS  Google Scholar 

  16. Li J, Yang F-Q, Dong J-F (2011) Design and simulation of L-shaped chiral negative refractive index structure. Prog Electromagn Res 116:395–408

    Article  Google Scholar 

  17. Cheng Y, Nie Y, Gong RZ (2012) Giant optical activity and negative refractive index using complementary U-shaped structure assembly. Prog Electromagn Res M 25:239–253

    Article  Google Scholar 

  18. Li Z et al (2012) Composite chiral metamaterials with negative refractive index and high values of the figure of merit. Opt Express 20(6):6146–6156

    Article  Google Scholar 

  19. Zarifi D, Soleimani M, Nayyeri V (2012) A novel dual-band chiral metamaterial structure with giant optical activity and negative refractive index. J Electromagn Waves Appl 26(2–3):251–263

    Article  Google Scholar 

  20. Hendry E et al (2010) Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat Nanotechnol 5(11):783–787

    Article  CAS  Google Scholar 

  21. Ye Y, He S (2010) 90 polarization rotator using a bilayered chiral metamaterial with giant optical activity. Appl Phys Lett 96(20):203501

    Article  Google Scholar 

  22. Sabah C, Roskos HG (2012) Design of a terahertz polarization rotator based on a periodic sequence of chiral-metamaterial and dielectric slabs. Prog Electromagn Res 124:301–314

    Article  Google Scholar 

  23. Wang B, Koschny T, Soukoulis CM (2009) Wide-angle and polarization-independent chiral metamaterial absorber. Phys Rev B 80(3):033108

    Article  Google Scholar 

  24. Azad AK, Dai J, Zhang W (2006) Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Opt Lett 31(5):634–636

    Article  Google Scholar 

  25. Gu J et al (2009) A close-ring pair terahertz metamaterial resonating at normal incidence. Opt Express 17(22):20307–20312

    Article  CAS  Google Scholar 

  26. He M et al (2011) Negative refractive index in chiral spiral metamaterials at terahertz frequencies. Opt Int J Light Electron Opt 122(18):1676–1679

    Article  Google Scholar 

  27. Hu F et al (2014) Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions. Opt Commun 332:321–326

    Article  CAS  Google Scholar 

  28. Wang B et al (2009) Chiral metamaterials: simulations and experiments. J Opt A Pure Appl Opt 11(11):114003

    Article  Google Scholar 

  29. Liu N, Giessen H (2010) Coupling effects in optical metamaterials. Angew Chem Int Ed 49(51):9838–9852

    Article  CAS  Google Scholar 

  30. Yin X et al (2013) Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn Model. Nano Lett 13(12):6238–6243

    Article  CAS  Google Scholar 

  31. Hu F et al (2013) Design of a polarization insensitive multiband terahertz metamaterial absorber. J Phys D Appl Phys 46(19):195103

    Article  Google Scholar 

  32. Barron LD (2004) Molecular light scattering and optical activity, 2nd edn. University Press Cambridge, Cambridge

    Book  Google Scholar 

  33. Dong J et al (2009) Bi-layer cross chiral structure with strong optical activity and negative refractive index. Opt Express 17(16):14172–14179

    Article  CAS  Google Scholar 

  34. Xiong X et al (2010) Construction of a chiral metamaterial with a U-shaped resonator assembly. Phys Rev B 81(7):075119

    Article  Google Scholar 

  35. Zhou J et al (2012) Terahertz chiral metamaterials with giant and dynamically tunable optical activity. Phys Rev B 86(3):035448

    Article  Google Scholar 

  36. Rogacheva A et al (2006) Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys Rev Lett 97(17):177401

    Article  CAS  Google Scholar 

  37. Liu N et al (2007) Plasmon hybridization in stacked cut-wire metamaterials. Adv Mater 19(21):3628–3632

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation of China (No. 11374240 and 61265005), Natural Science basic Research Plan in Shaanxi Province of China (No. 2012KJXX-27), Ph.D. Programs Foundation of Ministry of Education of China (No. 20136101110007), Key Laboratory Science Research Plan of Shaanxi Education Department (13JS101), National Key Basic Research Program (2014CB339800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Yao, Z., Wang, Q. et al. Coupling Tai Chi Chiral Metamaterials with Strong Optical Activity in Terahertz Region. Plasmonics 10, 1005–1011 (2015). https://doi.org/10.1007/s11468-015-9892-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9892-7

Keywords

Navigation