Skip to main content
Log in

Improvement of cold tolerance of the half-high bush Northland blueberry by transformation with the LEA gene from Tamarix androssowii

  • Original Research
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Previous studies have shown that the late embryogenesis abundant (LEA) gene of Tamarix androssowii can enhance the drought tolerance of transgenic tobacco. In this study, the cloned LEA gene was transformed into half-high bush Northland blueberry in order to enhance its ability to tolerate cold stress. The cephalosporin antibiotics ceftriaxone, cefotaxime and cefazolin were used to optimize transformation of leaf explants, and kanamycin sulfate was used to select for transgenic shoots. PCR and Southern blot analysis confirmed 8 transformants with LEA gene copy numbers ranging from 1 to 7. The LEA chimeric gene was found to be normally transcribed in 6 transgenic lines by RT-PCR. The 8 transgenic lines were tested for cold tolerance by measuring the activities of peroxidase (POD) and superoxide dismutase (SOD), malondialdehyde (MDA) content and relative electrolyte leakage (REL). Overexpression of the LEA gene enhanced the activity of both POD and SOD under low temperature stress conditions. Lipid peroxidation in the transgenic lines was significantly lower than in non-transgenic plants after cold stress, as determined by MDA content and REL. Thus, our findings indicate that the LEA gene confers increased cold tolerance in the Northland blueberry and implicate the metabolic pathways through which it exerts this effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

LEA:

Late embryogenesis abundant

POD:

Peroxidase

SOD:

Superoxide dismutase

MDA:

Malondialdehyde

REL:

Relative electrolyte leakage

ROS:

Reactive oxygen species

Km:

Kanamycin

References

  • Alkharouf NW, Dhanaraj AL, Naik D, Overall C, Matthews BF, Rowland LJ (2007) BBGD: an online database for blueberry genomic data. BMC Plant Biol 7:5

    Article  PubMed  Google Scholar 

  • Alsheikh MK, Suso H-P, Robson M, Battey NH, Wetten A (2002) Appropriate choice of antibiotic and Agrobacterium strain improves transformation of antibiotic-sensitive Fragaria vesca and F.v. semperflorens. Plant Cell Rep 20:1173–1180

    Article  CAS  Google Scholar 

  • Arora R, Rowland LJ, Lehman JS, Lim CC, Panta GR, Vorsa N (2000) Genetic analysis of freezing tolerance in blueberry (Vaccinium section Cyanococcus). Theor Appl Genet 100:690–696

    Article  Google Scholar 

  • Balakhnina TI, Bennicelli RP, Stepniewska Z, Stepniewski W, Fomina RI (2009) Oxidative damage and antioxidant defense system in leaves of Vicia faba major L. cv. Bartom during soil flooding and subsequent drainage. Plant Soil. doi: 10.1007/s11104-009-0054-6

  • Bray EA (1993) Molecular Responses to water deficit. Plant Physiol 103(4):1035–1040

    CAS  PubMed  Google Scholar 

  • Cao X, Hammerschlag FA (2000) Improved shoot organogenesis from leaf explants of high bush blueberry. HortScience 35:945–947

    CAS  Google Scholar 

  • Cao X, Liu Q, Rowland LJ, Hammerschlag FA (1998) GUS expression in blueberry (Vaccinium spp.): factors influencing Agrobacterium-mediated gene transfer effixiency. Plant Cell Rep 18:266–270

    Article  CAS  Google Scholar 

  • Cao X, Hammerschlag FA, Douglass LA (2002) A two-step pretreatment significantly enhances shoot organogenesis from leaf explants of high bush blueberry cv. Bluecrop. HortScience 37:819–821

    CAS  Google Scholar 

  • Cao X, Fordham I, Douglass L, Hammerschlag F (2003) Sucrose level influences micropropagation and gene delivery into leaves from in vitro propagated high bush blueberry shoots. Plant Cell Tissue Organ Cult 75:255–259

    Article  CAS  Google Scholar 

  • Dhanaraj AL, Slovin JP, Rowland LJ (2005) Isolation of a cDNA clone and characterization of expression of the highly abundant, cold acclimation-associated 14 kDa dehydrin of blueberry. Plant Sci 168:949–957

    Article  CAS  Google Scholar 

  • Dhanaraj AL, Alkharouf NW, Beard HS, Chouikha IB, Matthews BF, Wei H, Arora R, Rowland LJ (2007) Major differences observed in transcript profiles of blueberry during cold acclimation under field and cold room conditions. Planta 225(3):735–751

    Article  CAS  PubMed  Google Scholar 

  • Dure L 3rd, Greenway SC, Galau GA (1981) Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20(14):4162–4168

    Article  CAS  PubMed  Google Scholar 

  • Dure L 3rd, Crouch M, Harada J, Ho THD, Mundy J, Quatrano R, Thomas T, Sung ZR (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12:475–486

    Article  CAS  Google Scholar 

  • Epstein E, Norlyn JD, Rush DW, Kingsbury RW, Kelley DB, Cunningham GA, Wrona AF (1980) Saline Culture of Crops: A Genetic Approach. Science 210:399–404

    Article  CAS  PubMed  Google Scholar 

  • Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275(8):5668–5674

    Article  CAS  PubMed  Google Scholar 

  • Gaweł S, Wardas M, Niedworok E, Wardas P (2004) Malondialdehyde (MDA) as a lipid peroxidation marker. Wiad Lek 57(9–10):453–455

    PubMed  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28:1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Gough RE (1991) The high bush blueberry and its management. Binghamton, New York

    Google Scholar 

  • Graham J, Greig K, Mcnicol RJ (1996) Transformation of blueberry without antibiotic selection. Ann Appl Biol 128:557–564

    Article  CAS  Google Scholar 

  • Hancock J, Hanson E (2001) Blueberry varieties for Michigan. In: Michigan Blueberries. Michigan Agricultural Experiment Station. Available via DIALOG. http://web1.msue.msu.edu/fruit/bbvarbul.htm of subordinate document. Accessed 10 Sep 2009

  • Honjoh KI, Matsumoto H, Shimizu H, Ooyama K, Tanaka K, Oda Y, Takata R, Joh T, Suga K, Miyamoto T, Iio M, Hatano S (2000) Cryoprotective activities of group 3 late embryogenesis abundant proteins from Chlorella vulgaris C-27. Biosci Biotechnol Biochem 64(8):1656–1663

    Article  CAS  PubMed  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2(4):208–218

    Article  CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    Article  CAS  PubMed  Google Scholar 

  • Kornyeyev D, Logan BA, Payton P, Allen RD, Holaday S (2001) Enhanced photochemical light utilization and decreased chilling-induced photoinhibition of photosystem II in cotton overexpressing genes encoding chloroplast-targeted antioxidant enzymes. Physiol Plant 113:323–331

    Article  CAS  PubMed  Google Scholar 

  • Lal S, Gulyani V, Khurana P (2008) Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res 17(4):651–663

    Article  CAS  PubMed  Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochem 27:969–978

    Article  CAS  Google Scholar 

  • Li L, Ataden JV (1998) Effects of plant growth regulators on the antioxidant system in callus of two maize cultivars subjexted to water stress. Plant Growth Regul 24:55–56

    Article  Google Scholar 

  • Lin JJ, Assadd-Garcis N, Kuo J (1995) Plant hormone effect of antibiotics on the transformation efficiency of plant tissue by Agrobacterium tumefaciens cells. Plant Sci 109(2):171–177

    Article  CAS  Google Scholar 

  • Luo K, Zhang G, Deng W, Luo F, Qiu K, Pei Y (2008) Functional characterization of a cotton late embryogenesis-abundant D113 gene promoter in transgenic tobacco. Plant Cell Rep 27(4):707–717

    Article  CAS  PubMed  Google Scholar 

  • Meiners J, Schwab M, Szankowski I (2007) Efficient in vitro regeneration systems for Vaccinium species. Plant Cell Tissue and Organ Cult 89:169–176

    Article  Google Scholar 

  • Mukherjee SP, Choudhuri MA (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in vigna seedlings. Physiol Plant 58:166–170

    Article  CAS  Google Scholar 

  • Nakayama K, Okawa K, Kakizaki T, Inaba T (2008) Evaluation of the protective activities of a late embryogenesis abundant (LEA) related protein, Cor15am, during various stresses in vitro. Biosci Biotechnol Biochem 72(6):1642–1645

    Article  CAS  PubMed  Google Scholar 

  • NDong C, Danyluk J, Wilson KE, Pocock T, Huner NP, Sarhan F (2002) Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. Plant Physiol 129(3):1368–1381

    CAS  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388–395

    Article  CAS  PubMed  Google Scholar 

  • Parmentier-Line CM, Panta GR, Rowland LJ (2002) Changes in dehydrin expression associated with cold, ABA and PEG treatments in blueberry cell cultures. Plant Sci 162:273–282

    Article  CAS  Google Scholar 

  • Rohila JS, Jain RK, Wu R (2002) Genetic improvement of Basmati rice for salt and drought tolerance by regulated expression of a barley Hva1 cDNA. Plant Sci 163:525–532

    Article  CAS  Google Scholar 

  • Sairam RK, Rao KV, Arivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    Article  CAS  Google Scholar 

  • Senaratna T, McKersie BD, Stinson RH (1985) Simulation of dehydration injury to membranes from soybean axes by free radicals. Plant Physiol 77:472–474

    Article  CAS  PubMed  Google Scholar 

  • Shao HB, Liang ZS, Shao MA (2005) LEA proteins in higher plants: structure, function, gene expression and regulation. Colloids Surf B: Biointerfaces 45:131–135

    Article  CAS  Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho TD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9

    Article  CAS  PubMed  Google Scholar 

  • Song GQ, Sink KC (2004) Agrobacterium tumefaciens-mediated transformation of blueberry (Vaccinium corymbosum L.). Plant Cell Rep 23:475–484

    Article  CAS  PubMed  Google Scholar 

  • Sugie A, Naydenov N, Mizuno N, Nakamura C, Takumi S (2006) Overexpression of wheat alternative oxidase gene Waox1a alters respiration capacity and response to reactive oxygen species under low temperature in transgenic Arabidopsis. Genes Genet Syst 81(5):349–354

    Article  CAS  PubMed  Google Scholar 

  • Ukaji N, Kuwabara C, Takezawa D, Arakawa K, Fujikawa S (2001) Cold acclimation-induced WAP27 localized in endoplasmic reticulum in cortical parenchyma cells of mulberry tree was homologous to group 3 late-embryogenesis abundant proteins. Plant Physiol 126(4):1588–1597

    Article  CAS  PubMed  Google Scholar 

  • Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol J 5(3):361–380

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Jiang J, Zhao X, Liu G, Yang C, Zhan L (2006) A novel LEA gene form Tamarix androssowii confers drought tolerance in transgenic tobacco. Plant Sci 171:655–662

    Article  CAS  Google Scholar 

  • Wang L, Li X, Chen S, Liu G (2009a) Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA3. Biotechnol Lett 31(2):313–319

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Gao C, Liang Y, Wang C, Yang C, Liu G (2009b) A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. J Plant Physiol doi:10.1016/j.jplph.2009.09.008

  • Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a Late Embryogenesis Abundant Protein Gene, HVA1, from Barley Confers Tolerance to Water Deficit and Salt Stress in Transgenic Rice. Plant Physiol 110(1):249–257

    CAS  PubMed  Google Scholar 

  • Yahubyan G, Gozmanova M, Denev I, Toneva V, Minkov I (2009) Prompt response of superoxide dismutase and peroxidase to dehydration and rehydration of the resurrection plant Haberlea rhodopensis. Plant Growth Regul 57:49–56

    Article  CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217(4566):1214–1222

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Jing Jiang (Northeast Forestry University) for kindly providing plant expression vector pROKII-LEA. We also thank Prof. Guifeng Liu (Northeast Forestry University) for her technical assistance, and Dr. Hexin Wang (Dalian University) for providing the plant materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhao.

Additional information

The Liaoning Provincial Department of Education Project (20060445 and L2010210).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Zhan, LP. & Zou, XZ. Improvement of cold tolerance of the half-high bush Northland blueberry by transformation with the LEA gene from Tamarix androssowii . Plant Growth Regul 63, 13–22 (2011). https://doi.org/10.1007/s10725-010-9507-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-010-9507-4

Keywords

Navigation