Skip to main content

Advertisement

Log in

Transgenic Sugar Beet Expressing a Bacterial Mannitol-1-Phosphate Dehydrogenase (mtlD) Gene Shows Enhanced Resistance to Fungal Pathogens

  • Research Article
  • Published:
Sugar Tech Aims and scope Submit manuscript

Abstract

The E. coli mtlD gene encoding mannitol-1-phosphate dehydrogenase has been shown to be involved in the plant response to abiotic stresses such as salinity, drought and chilling. Nevertheless, in this study transgenic sugar beet lines containing the mtlD gene under control of a stress-inducible rd29A promoter were evaluated for their potential of resistance against three fungi including Alternaria alternata, Botrytis cinerea and Cercospora beticola. Southern blot analysis revealed the low copy number (1-3 copies) integration of the transgene in the transgenic lines. Expression profiling by semi-quantitative-RT-PCR analysis showed different levels of cold-inducible expression of mtlD in independent T1 transformants. Mannitol content quantified by HPLC analysis ranged from 1.8 to 3.7 µmol g−1 dry weight in different transgenic lines. Detached leaf bioassay showed that lower transgene expression levels in the transgenic line mt-LS4-32 under non-stressed conditions reduced the disease severity (DS) of A. alternata and B. cinerea by 49 to 87 %, respectively. At the whole-plant level, under non-stressed conditions, the transgenic line showed better performance to A. alternata with a delay of fungal symptom appearance. Following exposure to low temperature (4 °C), the transgenic line showed no fungal infection after 14 days of inoculation. Transgenic lines inoculated with C. beticola significantly (P < 0.001) showed higher resistance than the non-transformed control plants. DS in transgenic lines expressing mtlD gene was zero and 0.05 % compared to 25 % for the control. These results indicate that the mtlD gene can be used as a target to improve plant tolerance to both abiotic and biotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abebe, T., A.C. Guenzi, B. Martin, and J.C. Cushman. 2003. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiology 131: 1748–1755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez, M.E., R.I. Pennell, P.J. Meijer, A. Ishikawa, R.A. Dixon, and C. Lamb. 1998. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92: 773–784.

    Article  CAS  PubMed  Google Scholar 

  • Bauer, M., J. Libantova, J. Moravcikova, and I. Bekesiova. 2003. Transgenic tobacco plants constitutively expressing acidic chitinase from cucumber. Biologia 53: 749–758.

    Google Scholar 

  • Behnam, B., A. Kikuchi, F. Celebi-Toprak, M. Kasuga, K. Yamaguchi-Shinozaki, and K.N. Watanabe. 2007. Arabidopsis rd29A:DREB1A enhances freezing tolerance in transgenic potato. Plant Cell Reports 26: 1275–1282.

    Article  CAS  PubMed  Google Scholar 

  • Cai, D.G., M. Kleine, S. Kifle, H.J. Harloff, N.N. Sandal, K.A. Marcker, R.M. KleinLankhorst, E.M.J. Salentijn, W. Lange, W.J. Stiekema, U. Wyss, F.M.W. Grundler, and C. Jung. 1997. Positional cloning of a gene for nematode resistance in sugar beet. Science 275: 832–834.

    Article  CAS  PubMed  Google Scholar 

  • Celebi-Toprak, F., B. Behnam, G. Serrano, M. Kasuga, K. Yamaguchi-Shinozaki, H. Naka, J.A. Watanabe, S. Yamanaka, and K.N. Watanabe. 2005. Tolerance to salt stress in transgenic tetrasomic tetraploid potato, Solanum tuberosum cv. Desiree appears to be induced by DREB1A gene and rd29A promoter of Arabidopsis thaliana. Breeding Science 55: 311–320.

    Article  CAS  Google Scholar 

  • Chen, T.H.H., and N. Murata. 2002. Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Current Opinion of Plant Biology 5: 250–257.

    Article  CAS  Google Scholar 

  • Chen, X., and Z. Guo. 2008. Tobacco OPBP1 enhances salt tolerance and disease resistance of transgenic rice. International Journal of Molecular Science 9: 2601–2613.

    Article  CAS  Google Scholar 

  • Chiang, Y.J., C. Stushnoff, A.E. Mesay, M.L. Jones, and H.J. Bohnert. 2005. Overexpression of mannitol-1-phosphate dehydrogenase increases mannitol accumulation and adds protection against chilling injury in petunia. Journal of the American Society for Horticultural Science 130: 605–610.

    CAS  Google Scholar 

  • D’Halluin, K., M. Bossout, M. Bonne, B. Mazur, J. Leemans, and J. Botterman. 1992. Transformation of sugar beet (Beta vulgaris L.) and evaluation of herbicide resistance in transgenic plants. Biotechnology 10: 309–314.

    Article  Google Scholar 

  • Dalmay, T., A. Hamilton, S. Rudd, S. Angell, and D.C. Baulcombe. 2000. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101: 543–553.

    Article  CAS  PubMed  Google Scholar 

  • Dana, M.M., J.A. Pintor-Toro, and B. Cubero. 2006. Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiology 142: 722–730.

    Article  PubMed Central  Google Scholar 

  • Das, M., H. Chauhan, A. Chhibbar, Q.M.R. Haq, and P. Khurana. 2011. High-efficiency transformation and selective tolerance against biotic and abiotic stress in mulberry, Morus indica cv. K2, by constitutive and inducible expression of tobacco osmotin. Transgenic Research 20: 231–246.

    Article  CAS  PubMed  Google Scholar 

  • Daub, M.E., and M. Ehrenshaft. 2000. The photoactivated cercospora toxin cercosporin: Contributions to plant disease and fundamental biology. Annual review of Phytopathology 38: 461–490.

    Article  CAS  PubMed  Google Scholar 

  • Dellaporta, S.L., J. Wood, and J.B. Hicks. 1983. A plant DNA minipreparation version II. Plant Molecular Biology Reporter 1: 19–21.

    Article  CAS  Google Scholar 

  • FAO. 2009. Agribusiness handbook: Sugar beet white sugar.

  • Finn, T.E., L. Wang, D. Smolilo, N.A. Smith, R. White, et al. 2011. Transgene expression and transgene-induced silencing in diploid and autotetraploid Arabidopsis. Genetics 187: 409–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fondy, B.R., and D.R. Geiger. 1977. Sugar selectivity and other characteristics of phloem loading in Beta vulgaris L. Plant Physiology 59: 953–960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita, M., Y. Fujita, Y. Noutoshi, F. Takahashi, Y. Narusaka, K. Yamaguchi-Shinozaki, and K. Shinozaki. 2006. Crosstalk between abiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. Current Opinion Plant Biology 9: 436–442.

    Article  Google Scholar 

  • Hema, R., R.S. Vemanna, S. Sreeramulu, C.P. Reddy, M. Senthil-Kumar, and M. Udayakumar. 2014. Stable expression of mtlD gene imparts multiple stress tolerance in Finger Millet. PLoS ONE 9: e99110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hobbs, S.L.A., P. Kpodar, and C.M.O. Delong. 1990. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Molecular Biology 15: 851–864.

    Article  CAS  PubMed  Google Scholar 

  • Hobbs, S.L.A., T.D. Warkentin, and C.M.O. DeLong. 1993. Transgene copy number can be positively or negatively associated with transgene expression. Plant Molecular Biology 21: 17–26.

    Article  CAS  PubMed  Google Scholar 

  • Hu, L., H. Lu, Q. Liu, X. Chen, and X. Jiang. 2005. Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiology 25: 1273–1281.

    Article  CAS  PubMed  Google Scholar 

  • Ivic, S.D., R.C. Sicher, and A.C. Smigocki. 2001. Growth habit and sugar accumulation in sugar beet (Beta vulgaris L.) transformed with a cytokinin biosynthesis gene. Plant Cell Reports 20: 770–773.

    Article  CAS  Google Scholar 

  • Jafari, M., P. Norouzi, M.A. Malboobi, B. Ghareyazie, M. Valizadeh, S.A. Mohammadi, and M. Mousavi. 2009. Enhanced resistance to a lepidopteran pest in transgenic sugar beet plants expressing synthetic cry1Ab gene. Euphytica 165: 333–344.

    Article  CAS  Google Scholar 

  • Jayaraj, J., and Z.K. Punja. 2007. Combined expression of chitinase and lipid transfer protein genes in transgenic carrot plants enhances resistance to foliar fungal pathogens. Plant Cell Reports 26: 1539–1546.

    Article  CAS  PubMed  Google Scholar 

  • Jennings, D.B., M.E. Daub, D.M. Pharr, and J.D. Williamson. 2002. Constitutive expression of a celery mannitol dehydrogenase in tobacco enhances resistance to the mannitol-secreting fungal pathogen Alternaria alternata. Plant Journal 32: 41–49.

    Article  CAS  PubMed  Google Scholar 

  • Karakas, B., P. Ozias-Akins, C. Stushnoff, M. Suefferheld, and M. Rieger. 1997. Salinity and drought tolerance of mannitol accumulation transgenic tobacco. Plant Cell Environment 20: 609–616.

    Article  Google Scholar 

  • Kasuga, M., S. Miura, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2004. A combination of the Arabidopsis DREB1A gene and stress inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiology 45: 346–350.

    Article  CAS  PubMed  Google Scholar 

  • Khare, N., D. Goyary, N.K. Singh, P. Shah, M. Rathore, S. Anandhan, D. Sharma, M. Arif, and Z. Ahmed. 2010. Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell Tissue Organ Culture 103: 267–277.

    Article  CAS  Google Scholar 

  • Lamb, C., and R.A. Dixon. 1997. The oxidative burst in plant disease resistance. Annual review of plant physiology and plant molecular biology 48: 251–275.

    Article  CAS  PubMed  Google Scholar 

  • Lechtenberg, B., D. Schuberty, A. Forsbachz, M. Gils, and R. Schmidt. 2003. Neither inverted repeat T-DNA configurations nor arrangements of tandemly repeated transgenes are sufficient to trigger transgene silencing. Plant Journal 34: 507–551.

    Article  CAS  PubMed  Google Scholar 

  • Lennefors, B.L., E.I. Savenkov, J. Bensefelt, E. Wremerth-Weich, P. Roggen, and S. Tuvesson. 2006. dsRNA-mediated resistance to Beet Necrotic Yellow Vein Virus infections in sugar beet (Beta vulgaris L.). Molecular Breeding 18: 313–325.

    Article  CAS  Google Scholar 

  • Maheswari, M., Y. Varalaxmi, A. Vijayalakshmi, S.K. Yadav, P. Sharmila, B. Venkateswarlu, M. Vanaja, and P. Pardha Saradhi. 2010. Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. Biologia Plantarum 54: 647–652.

    Article  CAS  Google Scholar 

  • Mannerlof, M., B.L. Lennerfors, and P. Tenning. 1996. Reduced titer of BNYVV in transgenic sugar beets expressing the BNYVV coat protein. Euphytica 90: 293–299.

    Article  Google Scholar 

  • Mannerlof, M., S. Tuvesson, P. Steen, and P. Tenning. 1997. Transgenic sugar beet tolerant to glyphosate. Euphytica 94: 83–91.

    Article  CAS  Google Scholar 

  • Matzke, M.A., and A.J.M. Matzke. 1995. How and why do plants inactivate homologous (trans)genes? Plant Physiology 107: 679–685.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCabe, M.S., U.B. Mohapatra, S.C. Debnath, J.B. Power, and M.R. Davey. 1999. Integration, expression and inheritance of two linked T-DNA marker genes in transgenic lettuce. Molecular Breeding 5: 329–344.

    Article  CAS  Google Scholar 

  • Owens, L.D., and T.M. Heutte. 1997. A single amino acid substitution in the antimicrobial defense protein cecropin B is associated with diminished degradation by leaf intercellular fluid. Molecular Plant Microbe Interaction 10: 525–528.

    Article  CAS  Google Scholar 

  • Prabhavathi, V., and M.V. Rajam. 2007. Mannitol-accumulating transgenic eggplants exhibitenhanced resistance to fungal wilts. Plant Science 173: 50–54.

    Article  CAS  Google Scholar 

  • Prabhavathi, V., J.S. Yadav, and P.A. Kumar. 2002. Abiotic stress tolerance in transgenic eggplant (Solanum melongena L.) by introduction of bacterial mannitol phospho dehydrogenase gene. Molecular Breeding 9: 137–147.

    Article  CAS  Google Scholar 

  • Rahnama, H., H. Vakilian, H. Fahimi, and B. Ghareyazie. 2011. Enhanced salt stress tolerance in transgenic potato plants (Solanum tuberosum L.) expressing a bacterial mtlD gene. Acta Physiologia Plantarum 33: 1521–1532.

    Article  CAS  Google Scholar 

  • Ruperez, P., and G. Toledano. 2003. Celery by-products as a source of mannitol. European Food Research and Technology 216: 224–226.

    CAS  Google Scholar 

  • Salmeron, J.M., and B. Vernooij. 1998. Transgenic approaches to microbial disease resistance in crop plants. Current Opinion Plant Biology 1: 347–352.

    Article  CAS  Google Scholar 

  • Shane, W.W., and P.S. Teng. 1992. Impact of Cercospora leaf spot on root weight, sugar yield, and purity of Beta vulgaris. Plant Disease 76: 812–820.

    Article  CAS  Google Scholar 

  • Sharma, P., A.B. Jha, R.S. Dubey, and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany. doi:10.1155/2012/217037.

    Google Scholar 

  • Shen, B., G. Jensen, and H.J. Bohnert. 1997. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplast. Plant Physiology 113: 1177–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnoff, N. 1998. Plant resistance to environmental stress. Current Opinion in Biotechnology 9: 214–219.

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff, N., and Q.J. Cumbes. 1989. Hydroxyl radical-scavenging activity of compatible solutes. Phytochemistry 28: 1057–1060.

    Article  CAS  Google Scholar 

  • Snyder, G.W., J.C. Ingersoll, and A.C. Smigocki. 1999. Introduction of pathogen defense genes and a cytokinin biosynthesis gene into sugar beet (Beta vulgaris L.) by Agrobacterium or particle bombardment. Plant Cell Reports 18: 829–834.

    Article  CAS  Google Scholar 

  • Staerkel, C., M.J. Boenisch, C. Kroger, J. Bormann, W. Schafer, and D. Stahl. 2013. CbCTB2, an O-methyltransferase is essential for biosynthesis of the phytotoxin cercosporin and infection of sugar beet by Cercospora beticola. BMC Plant Biology 13: 50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoop, J.M.H., J.D. Williamson, and D.M. Pharr. 1996. Mannitol metabolism in plants: a method for coping with stress. Trends in Plant Science 1: 139–144.

    Article  Google Scholar 

  • Su, J., P.L. Chen, and R. Wu. 1999. Transgene expression of mannitol-1-phosphate dehydrogenase enhanced the salt stress tolerance of the transgenic rice seedlings. Scientific Agriculture Sinica 32: 101–103.

    CAS  Google Scholar 

  • Tang, W. 2002. Regeneration of transgenic Ioblolly pine expressing genes for salt tolerance. Journal of Forestry Research 13: 1–6.

    Article  Google Scholar 

  • Tang, W., X. Peng, and R.J. Newton. 2005. Enhanced tolerance to salt stress in transgenic loblolly pine simultaneously expressing two genes, encoding mannitol-1-phosphate dehydrogenase and lucitol-6-phosphate dehydrogenase. Plant Physiology and Biochemistry 43: 139–146.

    Article  CAS  PubMed  Google Scholar 

  • Tarczynski, M.C., R.G. Jensen, and H.J. Bohnert. 1992. Expression of a bacterial mtlD gene in transgenic tobacco leads to production and accumulation of mannitol. Proceedings of the National Academy of Sciences United States of America 89: 2600–2604.

    Article  CAS  Google Scholar 

  • Tarczynski, C., R.G. Jensen, and H.J. Bohnert. 1993. Stress protection of transgenic tobacco by production of the osmolite mannitol. Science 259: 508–510.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, J.C., M. Sepahi, B. Arendall, and H.J. Bohnert. 1995. Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell Environment 18: 801–806.

    Article  CAS  Google Scholar 

  • Waditee, R., N.H. Bhuiyan, E. Hirata, T. Hibino, Y. Tanaka, M. Shikata, and T. Takabe. 2007. Metabolic engineering for betaine accumulation in microbes and plants. Journal of Biological Chemistry 282: 34185–34193.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., D. Huang, R. Lu, J. Liu, Q. Qian, and X. Peng. 2000. Salt tolerance of transgenic rice (0ryza sativa L.) with mtlD gene and gutD gene. Chinese Science Bulletin 45: 1685–1690.

    Article  CAS  Google Scholar 

  • Wilhite, S.E., T.C. Elden, V. Puizdar, S. Armstrong, and A.C. Smigocki. 2000. Inhibition of aspartyl and serine proteinases in midgut of sugar beet root maggot with proteinase inhibitors. Entomologia Experimentalis et Applicata 97: 229–233.

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki, K., and K. Shinozaki. 1994. A novel cis acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, Q., L. Cong, J.L. Chang, K.X. Li, G.X. Yang, and G.Y. He. 2006. Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment. Journal of Experimental Botany 57: 3737–3746.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, B., T.H.H. Chen, and P.H. Li. 1995. Activation of two osmotin like genes by abiotic stimuli and fungal pathogen in transgenic potato plants. Plant Physiology 108: 929–937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmermann, M.H., and H. Ziegler. 1975. List of sugars and sugar alcohols in sieve-tube exudates. In Encyclopedia of plant physiology, ed. M.H. Zimmermann, and J.A. Milburn, 479–503. New York: Springer.

    Google Scholar 

Download references

Acknowledgments

The authors thank the Bioscience and Biotechnology Institute of Urmia University for providing the necessary laboratory facilities. The authors would also like to thank Dr. Y. Ghosta, Dep. of Plant Protection, University of Urmia, Urmia, Iran, for providing the fungal isolates A. alternata and B. cinerea.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morad Jafari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goudarzi, A., Jafari, M., Safaie, N. et al. Transgenic Sugar Beet Expressing a Bacterial Mannitol-1-Phosphate Dehydrogenase (mtlD) Gene Shows Enhanced Resistance to Fungal Pathogens. Sugar Tech 18, 192–203 (2016). https://doi.org/10.1007/s12355-015-0379-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12355-015-0379-9

Keywords

Navigation