Skip to main content
Log in

Black holes with quintessence in pure Lovelock gravity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this work, we obtain the solution corresponding to a static spherically symmetric black hole surrounded by quintessence in pure Lovelock gravity. Some aspects of the thermodynamics of this black hole are investigated, with special emphasis on the Hawking temperature, entropy and heat capacity. The behaviors of these quantities are analyzed and the differences with respect to the ones in the Theory of General Relativity are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lovelock, D.: The einstein tensor and its generalizations. J. Math. Phys. 12(3), 498 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  2. Zwiebach, B.: Curvature squared terms and string theories. Phys. Lett. B 156(5–6), 315 (1985)

    Article  ADS  Google Scholar 

  3. Nojiri, S., Odintsov, S., Oikonomou, V.: Modified gravity theories on a nutshell: inflation, bounce and late-time evolution, arXiv preprint arXiv:1705.11098 (2017)

  4. Boulware, D.G., Deser, S.: String-generated gravity models. Phys. Rev. Lett. 55(24), 2656 (1985)

    Article  ADS  Google Scholar 

  5. Dadhich, N., Ghosh, S.G., Jhingan, S.: Bound orbits and gravitational theory. Phys. Rev. D 88(12), 124040 (2013)

    Article  ADS  Google Scholar 

  6. Dadhich, N., Pons, J.M.: Probing pure lovelock gravity by Nariai and Bertotti–Robinson solutions. J. Math. Phys. 54(10), 102501 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  7. Dadhich, N., Pons, J.M., Prabhu, K.: Thermodynamical universality of the Lovelock black holes. Gen. Relat. Gravit. 44(10), 2595 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  8. Abbott, B.P., Abbott, R., Abbott, T., Abernathy, M., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  9. Wheeler, J.T.: Symmetric solutions to the Gauss–Bonnet extended Einstein equations. Nucl. Phys. B 268(3–4), 737 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  10. Cai, R.G.: A note on thermodynamics of black holes in Lovelock gravity. Phys. Lett. B 582(3), 237 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hennigar, R.A., Tjoa, E., Mann, R.B.: Thermodynamics of hairy black holes in Lovelock gravity. J. High Energy Phys. 2017(2), 70 (2017)

    Article  MathSciNet  Google Scholar 

  12. Hennigar, R.A., Mann, R.B., Tjoa, E.: Superfluid black holes. Phys. Rev. Lett. 118(2), 021301 (2017)

    Article  ADS  Google Scholar 

  13. Myers, R.C., Simon, J.Z.: Black-hole thermodynamics in Lovelock gravity. Phys. Rev. D 38(8), 2434 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  14. Herscovich, E., Richarte, M.G.: Black holes in Einstein–Gauss–Bonnet gravity with a string cloud background. Phys. Lett. B 689(4), 192 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  15. Ghosh, S.G., Papnoi, U., Maharaj, S.D.: Cloud of strings in third order Lovelock gravity. Phys. Rev. D 90(4), 044068 (2014)

    Article  ADS  Google Scholar 

  16. Lee, T.H., Baboolal, D., Ghosh, S.G.: Lovelock black holes in a string cloud background. Eur. Phys. J. C 75(7), 297 (2015)

    Article  ADS  Google Scholar 

  17. Ghosh, S.G., Maharaj, S.D., Baboolal, D., Lee, T.H.: Lovelock black holes surrounded by quintessence. Eur. Phys. J. C 78(2), 90 (2018)

    Article  ADS  Google Scholar 

  18. Ghosh, S.G., Amir, M., Maharaj, S.D.: Quintessence background for 5D Einstein–Gauss–Bonnet black holes. Eur. Phys. J. C 77(8), 530 (2017)

    Article  ADS  Google Scholar 

  19. Whitt, B.: Spherically symmetric solutions of general second-order gravity. Phys. Rev. D 38(10), 3000 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  20. Wiltshire, D.: Spherically symmetric solutions of Einstein–Maxwell theory with a Gauss–Bonnet term. Phys. Lett. B 169(1), 36 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  21. Graça, J.M., Salako, G.I., Bezerra, V.B.: Quasinormal modes of a black hole with a cloud of strings in Einstein–Gauss–Bonnet gravity. Int. J. Mod. Phys. D 26(10), 1750113 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. Cai, R.G., Ohta, N.: Black holes in pure Lovelock gravities. Phys. Rev. D 74(6), 064001 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  23. Camanho, X.O., Edelstein, J.D.: A Lovelock black hole bestiary. Class. Quantum Gravity 30(3), 035009 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  24. Ade, P.A., Aghanim, N., Alves, M., Armitage-Caplan, C., Arnaud, M., Ashdown, M., Atrio-Barandela, F., Aumont, J., Aussel, H., Baccigalupi, C., et al.: Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 571, A1 (2014)

    Article  Google Scholar 

  25. Caldwell, R.: An introduction to quintessence. Braz. J. Phys. 30(2), 215 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  26. Lima, J.A.S.: Alternative dark energy models: an overview. Braz. J. Phys. 34(1A), 194 (2004)

    Article  ADS  Google Scholar 

  27. Liu, M., Lu, J., Gui, Y.: The influence of free quintessence on gravitational frequency shift and deflection of light with 4D momentum. Eur. Phys. J. C 59(1), 107 (2009)

    Article  ADS  Google Scholar 

  28. Kiselev, V.V.: Quintessence and black holes. Class. Quantum Gravity 20(6), 1187 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  29. Ghosh, S.G.: Rotating black hole and quintessence. Eur. Phys. J. C 76(4), 1 (2016)

    Article  ADS  Google Scholar 

  30. Toshmatov, B., Stuchlík, Z., Ahmedov, B.: Rotating black hole solutions with quintessential energy. Eur. Phys. J. Plus 132(2), 98 (2017)

    Article  Google Scholar 

  31. Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31(2), 161 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  32. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7(8), 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  33. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43(3), 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  34. Dadhich, N.: A distinguishing gravitational property for gravitational equation in higher dimensions. Eur. Phys. J. C 76(3), 104 (2016)

    Article  ADS  Google Scholar 

  35. Ghosh, S.G., Maharaj, S.D.: Cloud of strings for radiating black holes in Lovelock gravity. Phys. Rev. D 89(8), 084027 (2014)

    Article  ADS  Google Scholar 

  36. Dadhich, N., Hansraj, S., Chilambwe, B.: Compact objects in pure Lovelock theory. Int. J. Mod. Phys. D 26(06), 1750056 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  37. Dadhich, N.: Characterization of the Lovelock gravity by Bianchi derivative. Pramana 74(6), 875 (2010)

    Article  ADS  Google Scholar 

  38. Dadhich, N., Ghosh, S.G., Jhingan, S.: The Lovelock gravity in the critical spacetime dimension. Phys. Lett. B 711(2), 196 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  39. Dadhich, N.: On lovelock vacuum solution, arXiv preprint arXiv:1006.0337 (2010)

  40. Dolan, B.P.: The cosmological constant and black-hole thermodynamic potentials. Class. Quantum Gravity 28(12), 125020 (2011)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

V. B. Bezerra is partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through the research Project nr. 305835/2016-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Toledo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Another procedure to obtain the solution corresponding to a black hole with quintessence in pure Lovelock gravity

In this appendix, we will obtain the solution for the black hole surrounded by quintessence in pure Lovelock gravity directly from the generalized Einstein’s equation. This result will confirm the solution obtained in Sect. 4 by the method developed by Cai [10, 22].

We start supposing once more that the black hole metric has the form given by Eq. (15). Adopting \(f = 1 - F\), Dahich [39] showed that the solution for the generalized Einstein’s equations in pure Lovelock gravity is given by

$$\begin{aligned} G^\mu _{\nu } = -\frac{D-2}{r^{D-2}}(r^{D-2n - 1} F^n)' = T^{r}_{r} = T^{t}_{t}. \end{aligned}$$
(46)

where the comma represents the differentiation with respect to the coordinate r. In the region outside the black hole surrounded by quintessence, we get

$$\begin{aligned} (r^{D-2n - 1} F^n)' = \frac{q (D-1)}{2 r^{(D-1)\omega _q+1}}. \end{aligned}$$
(47)

Performing the integration in both sides of the Eq. (47), we get

$$\begin{aligned} F^n = \frac{\mu }{r^{D-2n-1}}-\frac{q (D-1)[(D-1) \omega _q+1] }{2 r^{(D-1)(\omega _q+1)-2n}}. \end{aligned}$$
(48)

It is worth observing that Eq. (48) is simmilar to Eq. (23) if we take \(\mu \rightarrow \frac{2M}{{\tilde{\alpha }}_n (D-2){\varSigma }_{D-2}}\) and \(q \rightarrow -\frac{q}{{\tilde{\alpha }}_n (D-1)[(D-1) \omega _q+1]}\).

Adding the cosmological constant to Eq. (48), we get [39]

$$\begin{aligned} F^n = {\varLambda }_1 r^{2n}+ \frac{\mu }{r^{D-2n-1}}-\frac{q (D-1)[(D-1) \omega _q+1] }{2 r^{(D-1)(\omega _q+1)-2n}}, \end{aligned}$$
(49)

where \({\varLambda }_1 = \frac{2 {\varLambda }}{(D-1)(D-2)}\).

dS/AdS black hole with quintessence in pure Lovelock gravity

Now, let us include the cosmological constant \({\varLambda }\) into the configuration under study. Thus, we can substitute \(|\alpha _0| = 2 {\varLambda }\) into Eq. (11). Therefore, we obtain the following equation

$$\begin{aligned} -{\varLambda }g_{\mu \nu } + \alpha _n G^{(n)}_{\mu \nu } = -{\varLambda }g_{\mu \nu }+ \alpha _n \left[ n \left( R^{(n)}_{\mu \nu } - \frac{1}{2}R^{(n)}g_{\mu \nu } \right) \right] = T_{\mu \nu }. \end{aligned}$$
(50)

According to the results obtained in the A,

$$\begin{aligned} f(r) = 1 - \frac{1}{\alpha ^{2-2/n}}\left[ {\varLambda }_1 r^{2n} + \frac{16 \pi M}{(D-2){\varSigma }_{D-2}r^{D - 2n-1}}+\frac{q}{r^{(D-1)(\omega _q+1)-2n}} \right] ^{\frac{1}{n}}.\nonumber \\ \end{aligned}$$
(51)

In the limit \(r \rightarrow \infty \),

$$\begin{aligned} f(r) = 1 - \frac{1}{\alpha ^{2-2/n}}\left[ {\varLambda }_1^{1/n} r^{2} + \frac{16 \pi M}{(D-2){\varSigma }_{D-2}r^{D -3}}+\frac{q}{r^{(D-1)\omega _q+D-3}} \right] . \end{aligned}$$
(52)

Thus, one can conclude that, in the limit of low energy, pure Lovelock gravity asymptotically gives the same results obtained in the TGR.

In order to analyze the black hole thermodynamics, we can write the black hole mass parameter as

$$\begin{aligned} M = \frac{(D-2) {\varSigma }_{D-2}}{16 \pi }\left[ \alpha ^{2n-2}r_h^{D-2n-1} -\frac{q}{r_h^{(D-1)\omega _q}} - {\varLambda }r_h^{D-1}\right] . \end{aligned}$$
(53)

The Hawking temperature of the black hole is given by

$$\begin{aligned} T = \frac{\alpha ^{2-2n}}{4 \pi n}\left[ \frac{\alpha ^{2n-2}(D-2n-1)}{r_h} +\frac{q \alpha ^{2-2n}\omega _q(D-1)}{r_h^{(D-1)\omega _q+D-2n}}-(D-1){\varLambda }r ^{2n-1}\right] \nonumber \\ \end{aligned}$$
(54)

and its entropy can be calculated by

$$\begin{aligned} S = \int \frac{dM}{T} = \int T^{-1} \frac{\partial M}{\partial r_h} d r_h =\frac{n (D-2) {\varSigma }_{D-2}}{4 (D-2n)\alpha ^{2-2n}} r_h^{D-2n}. \end{aligned}$$
(55)

Besides that, we can identify the thermodynamical pressure with the cosmological constant through the relation [40]

$$\begin{aligned} p = -\frac{{\varLambda }}{8\pi }, \end{aligned}$$
(56)

so that we can write the First Law of the black hole thermodynamics as

$$\begin{aligned} dM = T dS + V dp, \end{aligned}$$
(57)

where

$$\begin{aligned} V = \frac{\partial M}{\partial p} = \frac{(D-2) {\varSigma }_{D-2}}{2} r_h^{D-1}. \end{aligned}$$
(58)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toledo, J.M., Bezerra, V.B. Black holes with quintessence in pure Lovelock gravity. Gen Relativ Gravit 51, 41 (2019). https://doi.org/10.1007/s10714-019-2528-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2528-z

Keywords

Navigation