Skip to main content
Log in

Majorana Solutions to the Two-Electron Problem

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The two-electron atom is the simplest nontrivial quantum system not amenable to exact solutions. Today, its relevance in the development of quantum mechanics and its pedagogical value within the realm of atomic physics are widely recognized. In this work, an historical review of the known different methods and results devised to study such a problem is presented, with an emphasis to the calculations of the ground state energy of helium. Then we discuss several, related, unpublished results obtained around the same years by Ettore Majorana, which remained unknown till recent times. Among them a general variant of the variational method appears to be particularly interesting, even for current research in atomic and nuclear physics: it takes directly into account, already in the trial wavefunction, the action of the full Hamiltonian operator of a given quantum system. Further relevant contributions, specialized to the two-electron problem, include the introduction of the remarkable concept of an effective nuclear charge different for the two electrons (thus generalizing previous known results) and an application of the perturbative method, where the atomic number Z was treated effectively as a continuous variable. Finally a survey of results, relevant mainly for pedagogical reasons, is given; in particular we focus on simple broad range estimates of the helium ionization potential, obtained by suitable choices for the wavefunction, as well as on a simple alternative to Hylleraas’ method, which led Majorana to first order calculations comparable in accuracy with well-known order 11 results derived, in turn, by Hylleraas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Or, more precisely, according to Majorana, \(W_{I}^{\mathrm{He}}=20.31\mathrm{\ eV}\) and \(W_{I}^{\mathrm{Li}} = 71.08\mathrm{\ eV}\).

  2. Note, however, that Slater applied his conclusions to any atom.

  3. The entire set of nine papers published by Majorana has been recently re-published, with translations and commentaries, in Ref. [39]. However, the interested reader should take with some caution the additional material presented in the volume, due to several inaccuracies (about Majorana’s contributions) in some commentaries and, especially, the inclusion of an apocryphal “paper no.1b”, manifestly not authored by Majorana (see [40]).

  4. For possible relation to Fano quasi-stationary states, see the discussion in [48].

  5. Majorana refers simply to the Hylleraas method (see Sect. 2.4); the paper by Fock quoted here deals with just a general subject, i.e. the virial theorem in the framework of quantum mechanics, where the Hylleraas method is mentioned as an example.

  6. Note that in Ref. [38], Majorana applied this formula to the ground state as well as to other levels (with different values of a).

  7. Recall that such contribution dates around 1928–1929.

  8. Apart from the references in [37] and [38], we do not know precisely which papers were read and studied by Majorana, but from the arguments and, especially, from the symbols he used in his notes [17, 51], we can safely infer that he was well aware of a large part of the literature quoted above.

  9. In what follows, we use consecutive labels for the equations in the quotations from the original Majorana’s manuscript; we also conform, when necessary, the original notation to the present one.

  10. Note that the predicted electron affinity of the hydrogen atom, i.e. the difference between the ground state energies of the neutral atom and the once-ionized atom, is more than twice the actual value.

  11. For technical details, see [55].

  12. In particular, Majorana deduced the numerical values for the coefficients by requiring that ψ and its first derivative have a node at the same position when the two-electron system collapses into a one-electron one, i.e. r 1=0 (or r 2=0) and r 12=0.

  13. W/Rh=5.779 instead of −W/Rh=729/128=5.695.

References

  1. Mehra, J., Rechenberg, H.: The Historical Development of Quantum Theory, vol. 1, Part 2. Springer, New York (1982)

    Book  Google Scholar 

  2. Rutherford, E.: Philos. Mag. 21, 669 (1911)

    Article  MATH  Google Scholar 

  3. Bohr, N.: Philos. Mag. 26, 1, 476, 857 (1913)

    Google Scholar 

  4. Nagaoka, H.: Nature 69, 392 (1904)

    Article  ADS  Google Scholar 

  5. Nagaoka, H.: Philos. Mag. 7, 445 (1904)

    Article  MATH  Google Scholar 

  6. Sommerfeld, A.: Ann. Phys. (Berlin) 51, 1 (1916)

    Article  ADS  Google Scholar 

  7. Wilson, W.: Philos. Mag. 29, 795 (1915)

    Article  Google Scholar 

  8. Briggs, J.S.: Aust. J. Phys. 52, 341 (1999)

    ADS  Google Scholar 

  9. Sommerfled, A.: J. Opt. Soc. Am. 7, 509 (1923)

    Article  ADS  Google Scholar 

  10. Born, M., Heisenberg, W.: Z. Phys. 16, 229 (1923)

    Article  ADS  Google Scholar 

  11. van Vleck, J.H.: Philos. Mag. 44, 842 (1922)

    Article  Google Scholar 

  12. Bethe, H.A.: Quantenmechanik der Ein- und Zwei-Elektronen probleme. In: Handbuch der Physik, vol. 24. Springer, Berlin (1933)

    Google Scholar 

  13. Bethe, H.A., Salpeter, E.E.: Quantum Mechanics of One- and Two-Electron Atoms. Academic Press, New York (1957)

    MATH  Google Scholar 

  14. Bethe, H.A., Salpeter, E.E.: Quantum Mechanics of One- and Two-Electron Atoms. Plenum, New York (1977)

    Book  Google Scholar 

  15. Bethe, H.A., Salpeter, E.E.: Quantum Mechanics of One- and Two-Electron Atoms. Dover, New York (2008)

    Google Scholar 

  16. Ursold, A.: Ann. Phys. (Berlin) 82, 355 (1927)

    Article  ADS  Google Scholar 

  17. Esposito, S., Recami, E., van der Merwe, A., Battiston, R.: Ettore Majorana: Research Notes on Theoretical Physics. Springer, Heidelberg (2008)

    Google Scholar 

  18. Slater, J.C.: Proc. Natl. Acad. Sci. 13, 423 (1927)

    Article  ADS  Google Scholar 

  19. Slater, J.C.: Phys. Rev. 31, 333 (1928)

    Article  ADS  MATH  Google Scholar 

  20. Kellner, G.W.: Z. Phys. 44, 91 (1927)

    Article  ADS  MATH  Google Scholar 

  21. Ritz, W.: J. Reine Angew. Math. 135, 1 (1908)

    MATH  Google Scholar 

  22. Courant, R., Hilbert, D.: Methoden der Mathematischen Physik. Springer, Berlin (1924)

    MATH  Google Scholar 

  23. Courant, R., Hilbert, D.: Methods of Mathematical Physics. Interscience, New York (1953)

    Google Scholar 

  24. Hartree, D.R.: Proc. Camb. Philol. Soc. 24, 89, 111 (1928)

    Google Scholar 

  25. Gaunt, J.A.: Proc. Camb. Philol. Soc. 24, 328 (1928)

    Article  ADS  MATH  Google Scholar 

  26. Slater, J.C.: Phys. Rev. 35, 210 (1930)

    Article  ADS  Google Scholar 

  27. Slater, J.C.: Phys. Rev. 32, 339 (1928)

    Article  ADS  MATH  Google Scholar 

  28. Slater, J.C.: Phys. Rev. 32, 349 (1928)

    Article  ADS  Google Scholar 

  29. Fock, V.: Z. Phys. 61, 126 (1930)

    Article  ADS  MATH  Google Scholar 

  30. Hylleraas, E.A.: Rev. Mod. Phys. 35, 421 (1963)

    Article  ADS  Google Scholar 

  31. Hylleraas, E.A.: Quantum Chemistry: Classical Scientific Papers, vol. 48, p. 469. World Scientific, Singapore (1928). English translation in, Hettema, H., 2000

    Google Scholar 

  32. Lyman, T.: Astrophys. J. Lett. 60, 1 (1924)

    Article  ADS  Google Scholar 

  33. Hylleraas, E.A.: Quantum Chemistry: Classical Scientific Papers, vol. 54, p. 347. World Scientific, Singapore (1929). English translation in Hettema, H., 2000

    Google Scholar 

  34. Bethe, H.A.: Z. Phys. 55, 431 (1929)

    Article  ADS  Google Scholar 

  35. Hylleraas, E.A.: Quantum Chemistry: Classical Scientific Papers, vol. 17, p. 982. World Scientific, Singapore (1929). English translation in Hettema, H., 2000

    Google Scholar 

  36. Hylleraas, E.A.: Z. Phys. 65, 209 (1930)

    Article  ADS  MATH  Google Scholar 

  37. Majorana, E.: Nuovo Cimento 8, 22 (1931). English translation in Hettema, H.: Quantum Chemistry: Classical Scientific Papers. World Scientific, Singapore (2000)

    Article  Google Scholar 

  38. Majorana, E.: Nuovo Cimento 8, 78 (1931)

    Article  Google Scholar 

  39. Bassani, G.F. (ed.): Ettore Majorana: Scientific Papers, SIF, Bologna. Springer, Berlin (2006)

    MATH  Google Scholar 

  40. Esposito, S.: See arXiv:physics/0511222

  41. Heitler, W., London, F.: Z. Phys. 44, 455 (1927)

    Article  ADS  MATH  Google Scholar 

  42. Pucci, R., Angilella, G.G.N.: Found. Phys. 36, 1554 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  43. Esposito, S.: Ann. Phys. (Leipz.) 17, 302 (2008)

    Article  ADS  MATH  Google Scholar 

  44. Recami, E.: Il caso Majorana—Epistolario Documenti, Testimonianze. Mondadori, Milan 1987 and 1991. The last editions have been published by Di Renzo, Rome (2000–2011). arXiv:physics/9810023v5

  45. Esposito, S.: La cattedra vacante—Ettore Majorana, ingegno e misteri. Liguori, Naples (2009) and references therein

    Google Scholar 

  46. Fender, F.G., Vinti, J.P.: Phys. Rev. 46, 77 (1934)

    Article  ADS  Google Scholar 

  47. Wu, T.-Y.: Phys. Rev. 46, 239 (1934)

    Article  ADS  Google Scholar 

  48. Wilson, W.S.: Phys. Rev. 48, 536 (1935)

    Article  ADS  Google Scholar 

  49. Di Grezia, E., Esposito, S.: Found. Phys. 38, 228 (2008)

    Article  ADS  MATH  Google Scholar 

  50. Fock, V.: Z. Phys. 63, 855 (1930)

    Article  ADS  MATH  Google Scholar 

  51. Esposito, S., Majorana, E. Jr., van der Merwe, A., Recami, E.: Ettore Majorana—Notes on Theoretical Physics. Kluwer, Dordrecht (2003)

    Google Scholar 

  52. pp. 130–131 See Ref. [17]

  53. Volumetto III, Sect. 15.

  54. See Ref. [51], p. 267ff

  55. See Ref. [17], pp. 133–141

  56. See Ref. [17], pp. 131–133

  57. Drake, G.W.F., Cassar, M.M., Nistor, R.A.: Phys. Rev. A 65, 054501 (2002)

    Article  ADS  Google Scholar 

  58. Brodeur, M., et al.: Phys. Rev. Lett. 108, 052504 (2012)

    Article  ADS  Google Scholar 

  59. Cancio Pastor, P., et al.: Phys. Rev. Lett. 108, 143001 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Esposito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esposito, S., Naddeo, A. Majorana Solutions to the Two-Electron Problem. Found Phys 42, 1586–1608 (2012). https://doi.org/10.1007/s10701-012-9685-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-012-9685-1

Keywords

Navigation