Skip to main content

Advertisement

Log in

Potential evaluation of biogas production through the exploitation of naturally growing freshwater macroalgae Spirogyra varians

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Algae are a great choice for biofuel production because they are readily available and easy to grow. Anaerobic digestion (AD) of algal biomass could provide energy and minimize waste in a green and sustainable biorefinery. AD was used to assess macroalgal biomass as a biomethane source. Spirogyra’s biotechnological and industrial applications have recently gained the attention of researchers and used macroalgae as a sustainable biomass source for biogas, or “third-generation biofuel.” It was turned into biogas in slow-running freshwater streams. The prospect of using Spirogyra varians, macroalgae, for biogas production was examined. S. varians’ biochemical and nutritional composition reveals a significant amount of pigments, dietary protein, carbohydrates, and minerals. Furthermore, with S. varians biomass as a mono-substrate for biogas production, the most significant methane yield of 64.76% was achieved without any pretreatment; it was enhanced to 69.4% after pretreatment. As a result, S. varians was identified as a viable energy crop for biogas production due to its rapid growth, greater biomass yield, and rich nutritional components and organic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali, I., Ali, M. M., Basit, M. A., & Khanb, A. R. (2004). Production of biogas at mesophilic and thermophilic temperatures. Biological Sciences-PJSIR, 47(1), 5–8.

    Google Scholar 

  • APHA-AWWA-WPCF. (2005). Standards methods for the examination of water and wastewater (21st ed.). APHA-AWWA -WPCF.

    Google Scholar 

  • Arromdee, P., Nawalerskasama, A., & Saewong, N. (2017). Economic analysis of electricity generation from chicken manure by plug flow anaerobic digester and CSTR anaerobic digester. Humanities, Arts and Social Sciences Studies, 17(3), 27–50.

    Google Scholar 

  • Bautista, J. P. V., & Calvimontes, J. (2017). Evaluation of landfill biogas potential in Bolivia to produce electricity. Revista Investigación & Desarrollo, 17(1), 55–62.

    Google Scholar 

  • Bhuyar, P., Shen, M. Y., Trejo, M., Unpaprom, Y., & Ramaraj, R. (2021a). Improvement of fermentable sugar for enhanced bioethanol production from Amorphophallus spp. tuber obtained from northern Thailand. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-021-01786-2

    Article  Google Scholar 

  • Bhuyar, P., Trejo, M., Dussadee, N., Unpaprom, Y., Ramaraj, R., & Whangchai, K. (2021b). Microalgae cultivation in wastewater effluent from tilapia culture pond for enhanced bioethanol production. Water Science and Technology. https://doi.org/10.2166/wst.2021.194

    Article  Google Scholar 

  • Chen, P. H., & Oswald, W. J. (1998). Thermochemical treatment for algal fermentation. Environment International, 24, 889–897.

    Article  CAS  Google Scholar 

  • Chuanchai, A., & Ramaraj, R. (2018). Sustainability assessment of biogas production from buffalo grass and dung: biogas purification and bio-fertilizer. 3 Biotech, 8(3), 1–11.

    Article  Google Scholar 

  • Hainz, R., Wöber, C., & Schagerl, M. (2009). The relationship between Spirogyra (Zygnematophyceae, Streptophyta) filament type groups and environmental conditions in Central Europe. Aquatic Botany, 91(3), 173–180.

    Article  Google Scholar 

  • Hoshaw, R. W., & McCourt, R. M. (1988). The Zygnemataceae (Chlorophyta). A twenty-year update of research. Phycologia, 27(4), 511–548.

    Article  Google Scholar 

  • Khammee, P., Ramaraj, R., Whangchai, N., Bhuyar, P., & Unpaprom, Y. (2021b). The immobilization of yeast for fermentation of macroalgae Rhizoclonium sp. for efficient conversion into bioethanol. Biomass Conversion and Biorefinery, 11, 827–835.

    Article  CAS  Google Scholar 

  • Khammee, P., Unpaprom, Y., Chaichompoo, C., Khonkaen, P., & Ramaraj, R. (2021a). Appropriateness of waste jasmine flower for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production. 3 Biotech, 11(5), 1–13. https://doi.org/10.2166/wst.2021.194

    Article  CAS  Google Scholar 

  • Kinyua, M. N., Zhang, J., Camacho-Céspedes, F., Tejada-Martinez, A., & Ergas, S. J. (2016). Use of physical and biological process models to understand the performance of tubular anaerobic digesters. Biochemical Engineering Journal, 107, 35–44.

    Article  CAS  Google Scholar 

  • Li, Y., Zhang, R., He, Y., Zhang, C., Liu, X., Chen, C., & Liu, G. (2014). Anaerobic co-digestion of chicken manure and corn stover in batch and continuously stirred tank reactor (CSTR). Bioresource Technology, 156, 342–347.

    Article  CAS  Google Scholar 

  • Liang, X., Zhang, X., Sun, Q., He, C., Chen, X., Liu, X., & Chen, Z. (2016). The role of filamentous algae Spirogyra spp. in methane production and emissions in streams. Aquatic sciences, 78(2), 227–239.

    Article  CAS  Google Scholar 

  • Mejica, G. F. C., Unpaprom, Y., & Ramaraj, R. (2021b). Fabrication and performance evaluation of dye-sensitized solar cell integrated with natural dye from Strobilanthes cusia under different counter-electrode materials. Applied Nanoscience. https://doi.org/10.1007/s13204-021-01853-0

    Article  Google Scholar 

  • Mejica, G. F. C., Unpaprom, Y., Whangchai, K., & Ramaraj, R. (2021a). Cellulosic-derived bioethanol from Limnocharis flava utilizing alkaline pretreatment. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01218-7

    Article  Google Scholar 

  • Moen, E., Horn, S., & Østgaard, K. (1997). Alginate degradation during anaerobic digestion of Laminaria hyperborea stipes. Journal of Applied Phycology, 9, 157–166.

    Article  CAS  Google Scholar 

  • Mussgnug, J. H., Klassen, V., Schlüter, A., & Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150, 51–56.

    Article  CAS  Google Scholar 

  • Nguyen, T., Unpaprom, Y., & Ramaraj, R. (2020). Enhanced fermentable sugar production from low grade and damaged longan fruits using cellulase with algal enzymes for bioethanol production. Emergent Life Sciences Research, 6(2), 26–31.

    Article  CAS  Google Scholar 

  • Nong, H. T. T., Unpaprom, Y., Whangchai, K., & Ramaraj, R. (2020). Sustainable valorization of water primrose with cow dung for enhanced biogas production. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01065-6

    Article  Google Scholar 

  • Official Methods of Analysis of AOAC International. (2012). 19th Ed., AOAC International, 420 Gaithersburg, MD, USA.

  • Page, A. L., & Keeney, D. R. (1982). Methods of soil analysis. American Society of Agronomy.

    Google Scholar 

  • Pimpimol, T., Tongmee, B., Lomlai, P., Prasongpol, P., Whangchai, N., Unpaprom, Y., & Ramaraj, R. (2020). Spirogyra cultured in fishpond wastewater for biomass generation. Maejo International Journal of Energy and Environmental Communication, 2(3), 58–65.

    Article  Google Scholar 

  • Ramaraj, R., Bhuyar, P., Intarod, K., Sameechaem, N., & Unpaprom, Y. (2021). Stimulation of natural enzymes for germination of mimosa weed seeds to enhanced bioethanol production. 3 Biotech, 11(6), 1–9.

    Article  Google Scholar 

  • Ramaraj, R., & Dussadee, N. (2015). Biological purification processes for biogas using algae cultures: A review. International Journal of Sustainable and Green Energy, 4(1), 20–32.

    CAS  Google Scholar 

  • Ramaraj, R., Unpaprom, Y., & Dussadee, N. (2016). Potential evaluation of biogas production and upgrading through algae. International Journal of New Technology and Research, 2(3), 128–133.

    Google Scholar 

  • Ramaraj, R., Unpaprom, Y., Whangchai, N., & Dussadee, N. (2015). Culture of macroalgae Spirogyra ellipsospora for long-term experiments, stock maintenance and biogas production. Emergent Life Sciences Research, 1, 38–45.

    Google Scholar 

  • Saengsawang, B., Bhuyar, P., Manmai, N., Ponnusamy, V. K., Ramaraj, R., & Unpaprom, Y. (2020). The optimization of oil extraction from macroalgae, Rhizoclonium sp. by chemical methods for efficient conversion into biodiesel. Fuel, 274, 117841.

    Article  CAS  Google Scholar 

  • Saetang, N., & Tipnee, S. (2021). Towards a sustainable approach for the development of biodiesel microalgae, Closterium sp. Maejo International Journal of Energy and Environmental Communication, 3(1), 25–29.

    Article  Google Scholar 

  • Serrano-Silva, N., Sarria-Guzmán, Y., Dendooven, L., & Luna-Guido, M. (2014). Methanogenesis and methanotrophy in soil: A review. Pedosphere, 24(3), 291–307.

    Article  CAS  Google Scholar 

  • Sophanodorn, K., Unpaprom, Y., Whangchai, K., Duangsuphasin, A., Manmai, N., & Ramaraj, R. (2020b). A biorefinery approach for the production of bioethanol from alkaline-pretreated, enzymatically hydrolyzed Nicotiana tabacum stalks as feedstock for the bio-based industry. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-01177-z

    Article  Google Scholar 

  • Sophanodorn, K., Unpaprom, Y., Whangchai, K., Homdoung, N., Dussadee, N., & Ramaraj, R. (2020a). Environmental management and valorization of cultivated tobacco stalks by combined pretreatment for potential bioethanol production. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-020-00992-8

    Article  Google Scholar 

  • Souvannasouk, V., Shen, M. Y., Trejo, M., & Bhuyar, P. (2021). Biogas production from Napier grass and cattle slurry using a green energy technology. International Journal of Innovative Research and Scientific Studies, 4(3), 174–180.

    Article  Google Scholar 

  • Surra, E., Bernardo, M., Lapa, N., Esteves, I., Fonseca, I., & Mota, J. P. (2018). Enhanced biogas production through anaerobic co-digestion of ofmsw with maize cob waste pre-treated with hydrogen peroxide. Chemical Engineering Transactions, 65, 121–126.

    Google Scholar 

  • Tipnee, S., Ramaraj, R., & Unpaprom, Y. (2015). Nutritional evaluation of edible freshwater green Macroalga Spirogyra varians. Emergent Life Sciences Research, 1, 1–7.

    Google Scholar 

  • Trejo, M., Bhuyar, P., Unpaprom, Y., Dussadee, N., & Ramaraj, R. (2021). Advancement of fermentable sugars from fresh elephant ear plant weed for efficient bioethanol production. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-021-01753-x

    Article  Google Scholar 

  • Trejo, M., Mejica, G. F. C., Saetang, N., & Lomlai, P. (2020). Exploration of fatty acid methyl esters (FAME) in cyanobacteria for a wide range of algae-based biofuels. Maejo International Journal of Energy and Environmental Communication, 2(3), 35–42.

    Article  Google Scholar 

  • Trejo, M., & Pérez, E. Z. (2020). The effects of nutrient stress on marine microalgae for enhancing the biodiesel production. Maejo International Journal of Energy and Environmental Communication, 2(3), 27–34.

    Article  Google Scholar 

  • Triana-Jiménez, K. M., & Velásquez Lozano, M. E. (2019). Comparison of biogas production obtained from samples of Mitú and Sibundoy municipal solid waste. Ingeniería e Investigación, 39(2), 31–36.

    Article  Google Scholar 

  • Unpaprom, Y., Intasaen, O., Yongphet, P., & Ramaraj, R. (2015). Cultivation of microalga Botryococcus braunii using red Nile tilapia effluent medium for biogas production. Journal of Ecology and Environmental Sciences, 3, 58–65.

    CAS  Google Scholar 

  • Whangchai, K., Souvannasouk, V., Bhuyar, P., Ramaraj, R., & Unpaprom, Y. (2021). Biomass generation and biodiesel production from macroalgae grown in the irrigation canal wastewater. Water Science and Technology. https://doi.org/10.2166/wst.2021.195

    Article  Google Scholar 

  • Yang, L. (2019). Contrasting methane emissions from upstream and downstream rivers and their associated subtropical reservoir in eastern China. Scientific Reports, 9(1), 1–10.

    Google Scholar 

  • Yaru, S. S., & Adegun, I. K. (2017). Analyses of biogas and digestate from cattle dung anaerobic digestion. Futa Journal of Engineering and Engineering Technology, 11(2), 112–118.

    Google Scholar 

  • Yaru, S. S., Adewole, K. A., & Adegun, I. K. (2013). Comparative study of biogas from cattle dung and mixture of cattle dung with plantain peels. Nigerian Journal of Technological Research, 8, 45–50.

    Google Scholar 

  • Ziganshin, A. M., Liebetrau, J., Pröter, J., & Kleinsteuber, S. (2013). Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Applied Microbiology and Biotechnology, 97, 5161–5174.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuwalee Unpaprom.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramaraj, R., Junluthin, P., Dussadee, N. et al. Potential evaluation of biogas production through the exploitation of naturally growing freshwater macroalgae Spirogyra varians. Environ Dev Sustain (2022). https://doi.org/10.1007/s10668-021-02051-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-021-02051-2

Keywords

Navigation