Skip to main content
Log in

Experimental investigation of solar-powered desiccant cooling system by using composite desiccant “CaCl2/jute”

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

A solar-powered composite desiccant cooling system has been experimentally investigated. It consists of evacuated tube solar water heater, composite desiccant bed heat exchanger (CDBHE), direct evaporative cooling unit and cooling tower. The composite desiccant material has been synthesized by using iron mesh and jute layer impregnated with calcium chloride solution, and this composite desiccant is placed in shell- and tube-type heat exchanger to make CDBHE. In this desiccant cooling system, the evacuated tube solar water heater is used to produce required hot water for regeneration of composite desiccant material. A cooling tower is used to produce cooling water which is pumped into CDBHE during dehumidification process to remove heat of adsorption. Direct evaporative cooling unit is used to cool the outlet process air of CDBHE. It has been found that the average dehumidification rate increases by 54.1 % when using circulating cooling water. The COPth of desiccant cooling system has been found to be 0.46 with a cooling capacity of 353.8 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A d :

Dehumidification rate (kg/h)

A p :

Area of solar collector (m2)

CDBHE:

Composite desiccant bed heat exchanger

COPth :

Thermal coefficient of performance

DEC:

Direct evaporative cooling unit

ETC:

Evacuated tube collector

h in :

Enthalpy of process air at inlet of desiccant cooling system (kJ/kg)

\(h_{\text{out}}\) :

Enthalpy of process air at outlet of desiccant cooling system (kJ/kg)

I :

Solar intensity (W/m2)

\(\dot{m}_{\text{a}}\) :

Mass flow rate of process/regeneration air (kg/s)

Q c :

Cooling capacity (W)

Q s :

Solar energy (W)

R c :

Regeneration rate (kg/h)

\(t_{\text{DE}}\) :

Dehumidification time period (s)

t R :

Regeneration time period (s)

Y in :

Humidity ratio of process air at inlet of desiccant cooling system (g/kg)

Y out :

Humidity ratio of process air at outlet of desiccant cooling system (g/kg)

References

  • Abd-Elrahman, W. R., Hamed, A. M., El-Emam, S. H., & Awad, M. M. (2011). Experimental investigation on the performance of radial flow desiccant bed using activated alumina. Applied Thermal Engineering, 31, 2709–2715.

    Article  CAS  Google Scholar 

  • Fathalah, K., & Aly, S. E. (1996). Study of a waste heat driven modified packed desiccant bed dehumidifier. Energy Conversion and Management, 37, 457–471.

    Article  CAS  Google Scholar 

  • Ge, T. S., Dai, Y. J., & Li, Y. (2013). Feasible study of a self-cooled solid desiccant cooling system based on desiccant coated heat exchanger. Applied Thermal Engineering, 58, 281–290.

    Article  Google Scholar 

  • Ge, T. S., Dai, Y. J., Li, Y., & Wang, R. Z. (2012). Simulation investigation on solar powered desiccant coated heat exchanger cooling system. Applied Energy, 93, 532–540.

    Article  CAS  Google Scholar 

  • Ge, T. S., Dai, Y. J., & Wang, R. Z. (2011). Performance study of silica gel coated fin-tube heat exchanger cooling system based on a developed mathematical model. Energy Conversion and Management, 52, 2329–2338.

    Article  Google Scholar 

  • Ge, T. S., Dai, Y. J., Wang, R. Z., & Li, Y. (2008). Experimental investigation on a one-rotor two stage rotary desiccant cooling system. Energy, 33, 1807–1815.

    Article  Google Scholar 

  • Ge, T. S., Dai, Y. J., Wang, R. Z., & Peng, Z. Z. (2010a). Experimental comparison and analysis on silica gel and polymer coated fin-tube heat exchangers. Energy, 35, 2893–2900.

    Article  CAS  Google Scholar 

  • Ge, T. S., Li, Y., Dai, Y. J., & Wang, R. Z. (2010b). Performance investigation on a novel two-stage solar driven rotary desiccant cooling system using composite desiccant materials. Solar Energy, 87, 157–159.

    Article  Google Scholar 

  • Ge, T. S., Li, Y., Wang, R. Z., & Dai, Y. J. (2009). Experimental study on a two-stage rotary desiccant cooling system. International Journal of Refrigeration, 32, 498–508.

    Article  CAS  Google Scholar 

  • Hiremath, C. R., & Kadoli, R. (2013). Experimental studies on heat and mass transfer in a packed bed of burnt clay impregnated with CaCl2 liquid desiccant and exploring the use of gas side resistance model. Applied Thermal Engineering, 50, 1299–1310.

    Article  CAS  Google Scholar 

  • Hu, L. M., Ge, T. S., Jiang, Y., & Wang, R. Z. (2015). Performance study on composite desiccant material coated fin-tube heat exchangers. International Journal of Heat and Mass Transfer, 90, 109–120.

    Article  CAS  Google Scholar 

  • Joudi, K. A., & Madhi, S. M. (1987). An experimental investigation into a solar assisted desiccant-evaporative air-conditioning system. Solar Energy, 39(2), 97–107.

    Article  Google Scholar 

  • Kabeel, A. E. (2007). Solar powered air conditioning system using rotary honeycomb desiccant wheel. Renewable Energy, 32, 1842–1857.

    Article  CAS  Google Scholar 

  • Khalid, A., Mahmood, M., Asif, M., & Muneer, T. (2009). Solar assisted, pre-cooled hybrid desiccant cooling system for Pakistan. Renewable Energy, 34, 151–157.

    Article  CAS  Google Scholar 

  • Kline, S. J., & McClintock, F. A. (1953). Describing uncertainties in single-sample experiments. Mechanical Engineering, 78, 3–8.

    Google Scholar 

  • Kumar, M., & Yadav, A. (2015). Experimental investigation of solar powered water production from atmospheric air by using composite desiccant material “CaCl2/saw wood”. Desalination, 367, 216–222.

    Article  CAS  Google Scholar 

  • La, D., Dai, Y. J., Li, Y., Ge, T. S., & Wang, R. Z. (2011). Case study and theoretical analysis of a solar driven two-stage rotary desiccant cooling system assisted by vapor compression air-conditioning. Solar Energy, 85, 2997–3009.

    Article  Google Scholar 

  • Myat, A., Thu, K., Kim, Y. D., Saha, B. B., & Ng, K. C. (2012). Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants. Energy, 46, 493–521.

    Article  Google Scholar 

  • Pramuang, S., & Exell, R. H. B. (2007). The regeneration of silica gel desiccant by air from a solar heater with a compound parabolic concentrator. Renewable Energy, 32, 173–182.

    Article  CAS  Google Scholar 

  • Singh, S., & Singh, P. L. (1998). Regeneration of silica gel in multi-shelf regenerator. Renewable Energy, 13(1), 105–119.

    Article  CAS  Google Scholar 

  • Sultan, M., El-Sharkawy, I. I., Miyazaki, T., Saha, B. B., & Koyama, S. (2015). An overview of solid desiccant dehumidification and air conditioning systems. Renewable and Sustainable Energy Reviews, 46, 16–29.

    Article  Google Scholar 

  • Techajunta, S., Chirarattananon, S., & Exell, R. H. B. (1999). Experiments in a solar simulator on solid desiccant regeneration and air dehumidification for air conditioning in a tropical humid climate. Renewable Energy, 17, 549–568.

    Article  Google Scholar 

  • Tretiak, C. S., & Abdallah, N. B. (2009). Sorption and desorption characteristics of a packed bed of clay–CaCl2 desiccant particles. Solar Energy, 83, 1861–1870.

    Article  CAS  Google Scholar 

  • Weixing, Y., Yi, Z., Xiaoru, L., & Xiugan, Y. (2008). Study of a new modified cross-cooled compact solid desiccant dehumidifier. Applied Thermal Engineering, 28, 2257–2266.

    Article  Google Scholar 

  • Worek, W. M., & Lavan, Z. (1982). Performance of a cross-cooled desiccant dehumidifier prototype. Solar Energy, 8, 187–196.

    Article  Google Scholar 

  • Yadav, A., & Bajpai, V. K. (2012). Experimental comparison of various solid desiccants for regeneration by evacuated solar air collector and air dehumidification. Drying Technology: An International Journal, 30(5), 516–525.

    Article  CAS  Google Scholar 

  • Zhao, Y., Ge, T. S., Dai, Y. J., & Wang, R. Z. (2014). Experimental investigation on a desiccant dehumidification unit using fin-tube heat exchanger with silica gel coating. Applied Thermal Engineering, 63, 52–58.

    Article  CAS  Google Scholar 

  • Zheng, X., Ge, T. S., Jiang, Y., & Wang, R. Z. (2015). Experimental study on silica gel-LiCl composite desiccants for desiccant coated heat exchanger. International journal of refrigeration, 51, 24–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Yadav, A. Experimental investigation of solar-powered desiccant cooling system by using composite desiccant “CaCl2/jute”. Environ Dev Sustain 19, 1279–1292 (2017). https://doi.org/10.1007/s10668-016-9796-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-016-9796-5

Keywords

Navigation