Skip to main content

Advertisement

Log in

Comparison of rhizosphere properties as affected by different Bt- and non-Bt-cotton (Gossypium hirsutum L.) genotypes and fertilization

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Incorporation of genetically modified crops in the cropping system raises the need for studying the effect of these crops on the soil ecosystem. The current study aimed to compare the effect of Bacillus thuringiensis (Bt)- and non-Bt-cotton (Gossypium hirsutum L.) genotypes on rhizosphere properties under fertilized and unfertilized soil conditions. One non-Bt-cotton (IUB 75) and four Bt-cotton varieties (IUB-222, MM-58, IUB-13, FH-142) were sown in a Randomized Complete Block Design (RCBD) in a factorial fashion with three replications under unfertilized (T1) and fertilized (T2 at NPK 310–170–110 kg ha−1) soil conditions. The culturable soil bacterial population was recorded at flowering, boll opening, and harvesting stages, while other rhizosphere biological and chemical properties were recorded at harvesting. Results revealed that Bt-cotton genotypes IUB-222 and FH-142 showed significantly higher rhizosphere total nitrogen, NH4 +–N, available phosphorus, and available potassium. Total organic carbon and microbial biomass carbon was also maximum in the rhizosphere of IUB-222 under fertilized conditions. Similarly, bacterial population (CFU g−1) at flowering stage and at harvesting was significantly higher in the rhizosphere of IUB-222 as compared to non-Bt- (IUB-75) and other Bt-cotton genotypes under same growth conditions. It showed that Bt genotypes can help in maintaining soil macronutrients (total nitrogen, available phosphorus, and available potassium) under proper nutrient management. Moreover, Bt-cotton genotypes seem to strengthen certain biological properties of the soil, thus increasing the growth and yield capability, maintaining available nutrients in the soil as compared to non-Bt cotton, while no harmful effects of Bt cotton on soil properties was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abid, M., Ashfaq, M., Khalid, I., & Ishaq, U. (2011). An economic evaluation of impact of soil quality on Bt (Bacillus thuringiensis) cotton productivity. Soil and Environment, 30(1), 78–81.

    Google Scholar 

  • Alexander, M. (1982). Most probable number method for microbial population. In A. L. Page (Ed.), 0-ccc method of soil analysis. Part 2. Agronomy no. 9 (pp. 815–820). Madison: American Society of Agronomy.

    Google Scholar 

  • Anayeva, N. D., Suysan, E. A., Chernova, O. V., & Wirth, S. (2008). Microbial respiration activities of soils from different climatic regions of European Russia. European Journal of Soil Biology, 44(2), 147–157.

    Article  Google Scholar 

  • Arshad, M., Anjum, S., Gogi, M. D., Yaseen, M., Asghar, M., Tayyib, M., Haider, K., Faisal, H., & Naeem, U. (2009). Farmers perceptions of insect pests and pest management practices in Bt cotton in the Punjab, Pakistan. International Journal of Pest Management, 55(1), 1–10.

    Article  Google Scholar 

  • Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends Plant Sci, 17, 478–486.

    Article  CAS  Google Scholar 

  • Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68, 1–13.

    Article  CAS  Google Scholar 

  • Bremner, E., & Kessel, V. (1990). Extractability of microbial 14C and 15N following addition of variable rates of labeled glucose and ammonium sulphate to soil. Soil Biology and Biochemistry, 22, 707–713.

    Article  Google Scholar 

  • Carvalhais, L. C., Dennis, P. G., Fedoseyenko, D., Hajirezaei, M. R., Borriss, R., & Wiren, N. V. (2011). Root exudation of sugars, amino acids and organic acids by maize as affected by nitrogen, phosphorus, potassium and iron deficiency. Journal of Plant Nutrition and Soil Science, 174, 3–11.

    Article  CAS  Google Scholar 

  • Dennis, P. G., Miller, A. J., & Hirsch, P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiology Ecology, 72, 313–327.

    Article  CAS  Google Scholar 

  • Duncan, D. B. (1955). Multiple range and multiple F-test. Biometrics, 11, 1–42.

    Article  Google Scholar 

  • Dunsfield, K. E., & Germida, J. J. (2004). Impact of genetically modified crops on soil and plant associated microbial communities. Journal of Environmental Quality, 33, 806–815.

    Article  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle size analysis. In A. Klute (Ed.), Methods of soil analysis. Part 2 nd (Ed.) Agron. Monogr. 9 (pp. 383–411). Madison: ASA and SSSA.

    Google Scholar 

  • Glick, S. H., Cassman, K. G., & Grattan, S. R. (1989). Exploitation of soil potassium in layered profiles by root systems of cotton and barley. Soil Science Society of America Journal, 53, 146–153.

    Article  Google Scholar 

  • Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed.). New York: John Wiley & Sons Inc..

    Google Scholar 

  • Griffiths, B. S., Caul, S., Thompson, J., Birch, A. N. E., Scrimgeour, C., Cortet, J., Foggo, A., & Hackett, C. A. (2006). Soil microbial and faunal community responses to Bt maize and insecticide in two soils. Journal of Environmental Quality, 35, 734–741.

    Article  CAS  Google Scholar 

  • Gul, S., Khan, N. U., Batool, S., Baloch, M. J., Munir, M., Sajid, M., Khakwani, A. A., Ghaloo, S. A., Soomro, Z. A., & Kazmi, S. F. (2014). Genotype by environment interaction and association of morphoyield variables in upland cotton. Journal of Animal Plant Sciences, 24(1), 262–271.

    Google Scholar 

  • Hawesm, M. C., Gunawardena, U., Miyasaka, S., & Zhao, X. (2000). The role of root border cells in plant defense. Trends in Plant Science, 5, 128–133.

    Article  Google Scholar 

  • Houlden, A., Timms-Wilson, T. M., Day, M. J., & Bailey, M. J. (2008). Influence of plant developmental stage on microbial community structure and activity in the impact assessment of transgenic plants on soil ecosystem. Applied Ecology and Environmental Research, 6(3), 1–19.

    Article  Google Scholar 

  • Jackson, M. L. (1962). Soil chemical analysis. Engl wood Cliff: Prentice Hall, Inc..

    Google Scholar 

  • Jenkinson, D. S., & Ladd, J. N. (1981). Microbial biomass in soil, measurement and turn over. New York: Marcel Dekker.

    Google Scholar 

  • Kamphake, L. J., Hannah, S. A., & Cohen, J. M. (1967). Automated analysis for nitrate by hydrazine reduction. Water Research, 1(3), 205–216.

    Article  CAS  Google Scholar 

  • Kapur, M., Bhatia, R., Pandey, G., Pandey, J., Paul, D., & Jain, R. K. (2010). A case study for assessment of microbial community dynamics in genetically modified Bt cotton crop fields. Current Microbiology, 61, 118–124.

    Article  CAS  Google Scholar 

  • Kennedy, A. C. (1998). The rhizosphere and spermophere. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Khan, N. U., & Hassan, G. (2011). Genetic effects on morphological and yield traits in cotton (G. hirsutum L.) Spanish Journal of Agricultural Research, 9(2), 460–472.

    Article  Google Scholar 

  • Khan, N. U., Hassan, G., Marwat, K. B., Farhatullah, Kumbhar, M. B., Parveen, A., Aiman, U., Khan, M. Z., & Soomro, Z. A. (2009a). Diallel analysis of some quantitative traits in G. hirsutum L. Pakistan Journal of Botany, 41(6), 3009–3022.

    Google Scholar 

  • Khan, N. U., Hassan, G., Marwat, K. B., Farhatullah, Batool, S., Makhdoom, K., Khan, I., Khan, I. A., & Ahmad, W. (2009b). Genetic variability and heritability in upland cotton. Pakistan Journal of Botany, 41(4), 1695–1705.

    Google Scholar 

  • Koyama, A., Wallenstein, M. D., Simpson, R. T., & Moore, J. C. (2014). Soil bacterial community composition altered by increased nutrient availability in Arctic tundra soils. Frontiers in Microbiology, 5(10), 516–3389.

    Google Scholar 

  • Lynch, J. M., & Panting, L. M. (1980). Cultivation and the soil biomass. Soil Biology and Biochemistry, 12, 29–33.

    Article  Google Scholar 

  • Masto, R. E., Chhonkar, P. K., Singh, D., & Patra, A. K. (2006). Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol. Soil Biology and Biochemistry, 38, 1577–1582.

    Article  CAS  Google Scholar 

  • Mina, U. (2011). Effect of cotton on enzyme activity and microorganisms in rhizosphere. Journal of Agricultural Sciences, 3(1), 1916–9760.

    Google Scholar 

  • Mina, U., & Choudhary, A. (2012). Impact of transgenic cotton varieties on activity of enzymes in their rhizosphere. Indian Journal of Biochemistry and Biophysics, 49, 195–201.

    CAS  Google Scholar 

  • Moodie, C. D., Smith, H. W., & McCreery, R. A. (1959). Laboratory manual for soil fertility (pp. 1–75). Washington: Department of Agronomy, State College of Washington Pullman.

    Google Scholar 

  • Nardi, S., Concheri, G., Pizzeghello, D., Sturaro, A., Rella, R., & Parvoli, G. (2000). Soil organic matter mobilization by root exudates. Chemosphere, 5, 653–658.

    Article  Google Scholar 

  • Paterson, E., Gebbing, T., Abel, C., Sim, A., & Telfer, G. (2007). Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytologist Trust, 173, 600–610.

    Article  CAS  Google Scholar 

  • Pindi, P. K., & Sultana, T. (2013). Bacterial and fungal diversity in rhizosphere soils of Bt and non-Bt cotton in natural system. Bulgarian Journal of Agricultural Sciences, 19(6), 1306–1310.

    Google Scholar 

  • Ryan, P. R., & Delhaize, E. (2001). Function and mechanism of organic anion exudation from plant roots. Annual Review in Plant Physiology and Plant Molecular Biology, 52, 527–560.

    Article  CAS  Google Scholar 

  • Ryan, J., Estefan, G., & Rashid, A. (2001). Soil and plant analysis laboratory manual (2nd ed.). Aleppo: International Center for Agriculture in Dry Areas (ICARDA) 172p.

    Google Scholar 

  • Sarkar, B., & Patra, A. K. (2009). Microbial biomass pools in the rhizosphere soils of transgenic Bt and non-Bt cotton on a sub-tropical haplustept. New Delhi: Indian Agricultural Research Institute (IARI).

    Google Scholar 

  • Sarkar, B., Patra, A. K., Purakayastha, T. J., & Megharaj, M. (2009). Assessment of biological and biochemical dindicators in soil under transgenic Bt and non-Bt cotton crop in a sub-tropical environment. Environmental Monitoring and Assessment, 156, 595–604.

    Article  CAS  Google Scholar 

  • Shen, R. F., Cai, H., & Gong, W. H. (2006). Transgenic Bt cotton has no apparent effect on enzymatic activities or functional diversity of microbial communities in rhizosphere soil. Plant & Soil, 285, 149–159.

    Article  CAS  Google Scholar 

  • Shukla, M. K., Lal, R., & Ebinger, M. (2004). Principal component analysis for predicting corn biomass and grain yields. Soil Science, 169, 215–224.

    Article  CAS  Google Scholar 

  • Sims, J. R., & Jackson, G. D. (1971). Rapid analysis of soil nitrate with chromotropic acid. Soil Science Society of America Journal, 35(4), 603–606.

    Article  CAS  Google Scholar 

  • Sinha, N. K., Mohanty, M., Meena, B. P., Das, H., Chopra, U. K., & Singh, A. K. (2013). Soil quality and indicators under continuous cropping system in the ecosystem of India. African Journal of Agriculture Research, 9(2), 285–293.

    Google Scholar 

  • Steel, R. G. D., Torrie, J. H., & Dicky, D. A. (1997). Principles and procedures of statistics—a biometrical approach (3rd ed.). Singapore: McGraw Hill Book International Co.

    Google Scholar 

  • Stotz, H. U., Pittendrigh, B. R., Kroymann, J., Weniger, K., Fritsche, J., Bauke, A., & Mitchell-Olds, T. (2000). Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth. Plant Physiology, 124, 1007–1018.

    Article  CAS  Google Scholar 

  • Tarafdar, J. C., Rathore, I., & Vandana, S. (2012). Effect of Bt-transgenic cotton on soil biological health. Applied Biological Research, 14(1), 15–23.

    Google Scholar 

  • Tesfaye, M., Temple, S. J., Allan, D. L., Vance, C. P., & Samac, D. A. (2001). Over-expression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiology, 127, 1836–1844.

    Article  CAS  Google Scholar 

  • Toljander, J. F., Santos-Gonzalez, J. C., Tehler, A., & Finlay, R. D. (2008). Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbiology Ecology, 65, 323–338.

    Article  CAS  Google Scholar 

  • Tyagi, S. (2007). Association of fluorescent pseudomonas with rhizosphere of wheat. Plant Archives, 7, 919–920.

    Google Scholar 

  • U.S. EPA (2001). Biopesticides registration action document for the Bacillus thuringiensis (Bt) plant-incorporated protectants. US EPA, Washington, DC. Available at: http://www.epa.gov/oppbppd1/biopesticides/pips/bt_brad.htm, accessed on: 25–08-2016.

  • Velmourougane, K. (2013). Indian Council of Agricultural Research, Central Institute for Cotton Research, Nagpur, Maharashtra, India. pp.108–114.

  • Watanabe, F. S., & Olsen, S. R. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts. Soil Science Society of America Proceedings, 29, 677–678.

    Article  CAS  Google Scholar 

  • Yan, W. D., Sh, W. M., Li, B. H., & Zhang, M. (2007). Overexpression of a foreign Bt gene in cotton affects the low-molecular-weight components in root exudates. Pedosphere, 17, 324–330.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the efforts of Dr. Alejandro J. Pieters and Mikenna Smith for editing the manuscript. We are thankful to the Department of Soil Science, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Pakistan, for providing the research facilities. The authors are also grateful to the Department of Plant Breeding and Genetics, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Pakistan, for the provision of cotton genotypes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maqshoof Ahamd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahamd, M., Abbasi, W.M., Jamil, M. et al. Comparison of rhizosphere properties as affected by different Bt- and non-Bt-cotton (Gossypium hirsutum L.) genotypes and fertilization. Environ Monit Assess 189, 278 (2017). https://doi.org/10.1007/s10661-017-5994-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5994-3

Keywords

Navigation