Skip to main content

Advertisement

Log in

Phosphorus geochemistry in a Brazilian semiarid mangrove soil affected by shrimp farm effluents

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Wastewater discharge from shrimp farming is one of the main causes of eutrophication in mangrove ecosystems. We investigated the phosphorus (P) geochemistry in mangrove soils affected by shrimp farming effluents by carrying out a seasonal study of two mangrove forests (a control site (CS); a site affected by shrimp farm effluents (SF)). We determined the soil pH, redox potential (Eh), total organic carbon (TOC), total phosphorus (TP), and dissolved P. We also carried out sequential extraction of the P-solid phases. In SF, the effluents affected the soil physicochemical conditions, resulting in lower Eh and higher pH, as well as lower TOC and higher TP than in CS. Organic P forms were dominant in both sites and seasons, although to a lesser extent in SF. The lower TOC in SF was related to the increased microbial activity and organic matter decomposition caused by fertilization. The higher amounts of P oxides in SF suggest that the effluents alter the dominance of iron and sulfate reduction in mangrove soils, generating more reactive Fe that is available for bonding to phosphates. Strong TP losses were recorded in both sites during the dry season, in association with increased amounts of exchangeable and dissolved P. The higher bioavailability of P during the dry season may be attributed to increased mineralization of organic matter and dissolution of Ca-P in response to more oxidizing and acidic conditions. The P loss has significant environmental implications regarding eutrophication and marine productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aburto-Oropeza, O., Ezcurra, E., Danemann, G., Valdez, V., Murray, J., & Sala, E. (2008). Mangroves in the Gulf of California increase fishery yields. Proceedings of the National Academy of Sciences of the United States of America, 105, 10456–10459.

    Article  CAS  Google Scholar 

  • Aguiar, P. F., El-Robrini, M., Freire, G. S. S., & Carvalho, R. G. (2013). Morphodynamic of beaches dominated by mesotide in the Almofala Sandy Play, NW of Ceará (Brazil). Pesquisa em Geociências, 40(1), 61–73.

    Google Scholar 

  • Alongi, D. M., Wattayakorn, G., Pfitznes, J., Tirendi, F., Zagorskis, I., Brunskill, G. J., et al. (2001). Organic carbon accumulation and metabolic rates in sediments of mangrove forests in southern Thailand. Marine Geology, 179, 85–103.

    Article  CAS  Google Scholar 

  • Alonso-Rodríguez, R., & Páez-Osuna, F. (2003). Nutrients, phytoplankton and harmful algal blooms in shrimp farming ponds: a review with special reference to the situation in the Gulf of California. Aquaculture, 219, 317–336.

    Article  Google Scholar 

  • Álvarez-Rogel, J., Jiménez-Cárceles, F. J., & Egea-Nicolás, C. (2007). Phosphorus retention in a coastal salt marsh in SE Spain. Science of the Total Environment, 378, 71–74.

    Article  Google Scholar 

  • Araújo, M. V., & Freire, G. S. S. (2007). Utilização de SIG nos estudos ambientais do estuário do Rio Acaraú—CEARÁ. Geonomos, 15, 09–19.

    Google Scholar 

  • Araújo Jr., J. M. C., Otero, X. L., Marques, A. G. B., Nóbrega, G. N., Silva, J. R. F., & Ferreira, T. O. (2012). Selective geochemistry of iron in mangrove soils in a semiarid tropical climate: effects of the burrowing activity of the crabs Ucides cordatus and Uca maracoani. Geo-Marine Letters, 32(4), 289–300. doi:10.1007/s00367-011-0268-5.

  • Avnimelech, Y. (1983). Phosphorus and calcium carbonate solubilities in Lake Kinneret. Limnology and Oceanography, 28, 640–645.

    Article  CAS  Google Scholar 

  • Azzoni, R., Giordani, G., & Viaroli, P. (2005). Iron-sulfur-phosphorus interactions: implications for sediment buffering capacity in a Mediterranean eutrophic lagoon (Sacca di Goro, Italy). Hydrobiologia, 550, 131–148.

    Article  CAS  Google Scholar 

  • Berner, R. A. (1970). Sedimentary pyrite formation. American Journal of Science, 268, 1–23.

    Article  CAS  Google Scholar 

  • Boyd, C. E. (1997). Bottom soils, sediment, and pond aquaculture. New York: Chapman & Hall.

    Google Scholar 

  • Bricker, S.B., Clement, C.G., Pirhalla, D.E., Orlando, S.P., Farrow, D.R.G. (1999). National Estuarine Eutrophication Assessment. Effects of nutrient enrichment in the nation's estuaries. NOAA - NOS Special Projects Office. Ref Type: Report.

  • Burford, M. A., Costanzo, S. D., Dennison, W. C., Jackson, C. J., Jones, A. B., McKinnon, A. D., et al. (2003). A synthesis of dominant ecological processes in intensive shrimp ponds and adjacent coastal environments in NE Australia. Marine Pollution Bulletin, 46, 1456–1469.

    Article  CAS  Google Scholar 

  • Canfield, D. E., Raiswell, R., & Bottrell, S. (1992). The reactivity of sedimentary iron minerals toward sulfide. American Journal of Science, 292, 659–683.

    Article  CAS  Google Scholar 

  • Casillas-Hernández, R., Nolasco-Soria, H., García-Galano, T., Carrillo-Farnes, O., & Páez-Osuna, F. (2007). Water qual- ity, chemical fluxes and production in semi-intensive pacific White shrimp (Litopenaeues vannamel) culture ponds utilizing two different feeding strategies. Aquacultural Engineering, 36, 105–114.

  • Coelho, J. P., Flindt, M. R., Jensen, H. S., Lillebo, A. I., & Pardal, M. A. (2004). Phosphorus speciation and availability in intertidal sediments of a temperate estuary: relation to eutrophication and annual P-fluxes. Estuarine, Coastal and Shelf Science, 61, 583–590.

    Article  CAS  Google Scholar 

  • Conesa, H. M., María-Cervantes, A., Álvarez-Rogel, J., & González-Alcaraz, M. N. (2011). Influence of soil properties on trace element availability and plant accumulation in a Mediterranean saltmarsh polluted by mining wastes: implications for phytomanagement. Science of the Total Environment, 409, 4470–4479.

    Article  CAS  Google Scholar 

  • de Jonge, V. N., & Villerius, L. A. (1989). Possible role of carbonate dissolution in estuarine phosphate dynamics. Limnology and Oceanography, 34, 332–340.

    Article  Google Scholar 

  • Deng, Y., Zheng, B., Fu, G., Lei, K., & Li, Z. (2010). Study on the total water pollutant load allocation in the Changjiang (Yangtze River) Estuary and adjacent seawater area. Estuarine, Coastal and Shelf Science, 86, 331–336.

    Article  CAS  Google Scholar 

  • DHN. Diretoria de Hidrografia e Navegação-Hydrography and Navigation Bureau (2013) Tábua das marés para o porto de Pecém e do porto do Mucuripe. Available in http://www.mar.mil.br/dhn/chm/tabuas/, viewed in October 2nd, 2013.

  • Diniz, S. F., Moreira, C. A., & Corradini, F. A. (2008). Erosive susceptible in low course of Acaraú river. CE Geociências (São Paulo), 27(3), 355–367.

    Google Scholar 

  • Feller, I. C., Whigham, D. F., O'Neill, J. P., & McKee, K. M. (1999). Effects of nutrient enrichment on within-stand nutrient cycling in mangrove ecosystems in Belize. Ecology, 80, 2193–2205.

    Article  Google Scholar 

  • Feller, I. C., Whigham, D. F., McKee, K. M., & O'Neill, J. P. (2002). Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry, 62, 145–175.

    Article  Google Scholar 

  • Ferreira, T. O., Otero, X. L., Vidal-Torrado, P., & Macías, F. (2007a). Redox processes in mangrove soils under Rhizophora Mangle in relation to different environmental conditions. Soil Science Society of America Journal, 71, 484–491.

    Article  CAS  Google Scholar 

  • Ferreira, T. O., Otero, X. L., Vidal-Torrado, P., & Macías, F. (2007b). Effects of bioturbation by root and crab activity on iron and sulfur biogeochemistry in mangrove substrate. Geoderma, 142, 36–46.

    Article  CAS  Google Scholar 

  • Figueiredo, M. C. B., Araújo, L. F. P., Gomes, R. B., Rosa, M. F., Paulino, W. D., & Morais, L. F. S. (2005). Impactos ambientais do lançamento de efluentes de carcinicultura em águas interiores. Engenharia Sanitária e Ambiental, 10, 167–174.

    Google Scholar 

  • Förstner, U., & Wittman, G. T. W. (1981). Metal pollution in the aquatic environment (2nd ed.). New York: Springer–Verlag.

    Book  Google Scholar 

  • FUNCEME/IPECE. Fundação Cearense de Metereologia e Recursos Hídricos—Instituto de Pesquisa e Estratégia Econômica do Ceará (2006). Perfil Básico Municipal-Acaraú.

  • Fytianos, K., & Kotzakioti, A. (2005). Sequential fractionation of phosphorus in lake sediments of northern Greece. Environmental Monitoring and Assessment, 100, 191–200.

    Article  CAS  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis: part 1. physical and mineralogical methods (2nd ed., pp. 383–411). Madison: Soil Science Society of America.

  • Golterman, H. L. (2001). Phosphate release from anoxic sediments or ‘What did Mortimer really write?’. Hydrobiologia, 450, 99–106.

    Article  CAS  Google Scholar 

  • Gomez, E., Durillon, C., Rofes, G., & Picot, B. (1999). Phosphate adsorption and release from sediments of brackish lagoons: pH, O2 and loading influence. Water Research, 33, 2437–2447.

    Article  CAS  Google Scholar 

  • González-Alcaraz, M. N., Álvarez-Rogel, J., María-Cervantes, A., Egea, C., & Conesa, H. M. (2012). Evolution and phosphorus fractionation in saline Spolic Technosols flooded with eutrophic water. Journal of Soils and Sediments, 12(9), 1316--1326.

  • Hager, S. M., & Schemel, L. E. (1992). Sources of nitrogen and phosphorus to northern San Francisco Bay. Estuaries and Coasts, 15, 40–52.

    Article  CAS  Google Scholar 

  • Holmer, M., Andersen, F. Ø., Holmboe, N., Kristensen, E., & Thongtham, N. (1999). Transformation and exchange processes in the Bangrong mangrove forest-seagrass bed system, Thailand. Seasonal and spatial variations in benthic metabolism and sulfur biogeochemistry. Aquatic Microbial Ecology, 20, 203–212.

    Article  Google Scholar 

  • Howarth, R. W. (1984). The ecological significance of sulfur in the energy of salt marsh and coastal marine sediments. Biogeochemistry, 1, 5–27.

    Article  CAS  Google Scholar 

  • Huerta-Díaz, M. A., & Morse, J. W. (1990). A quantitative method for determination of trace metal concentrations in sedimentary pyrite. Marine Chemistry, 29, 119–144.

    Article  Google Scholar 

  • Huerta-Díaz, M. A., Tovar-Sánchez, A., Filippelli, G., Latimer, J., & Sañudo-Wilhelmy, S. A. (2005). A combined CDB-Magic method for the determination of phosphorus associated with sedimentary iron oxyhydroxides. Applied Geochemistry, 20, 2108–2115.

    Article  Google Scholar 

  • Jiménez-Cárceles, F. J., & Álvares-Rogel, J. (2008). Phosphorus fractionation and distribution in a salt marsh soils affected by mine wastes and eutrophicated water: a case study in SE Spain. Geoderma, 144, 299–309.

    Article  Google Scholar 

  • Jiménez-Cárceles, F. J., Álvarez-Rogel, J., Egea-Nicolás, C., González-Alcaraz, M. N., Maria-Cervantes, A., & Conesa-Alcaraz, H. M. (2011). The role of salt marshes in reducing the concentration of nitrate and phosphorus in eutrophicated water: the Mar Menor Lagoon, a case study in Semiarid Mediterranean areas of SE Spain. In X. L. Otero & F. Macías (Eds.), Biogeochemistry and pedogenetic process in saltmarsh and mangrove systems (pp. 205–232). New York: Noca Science Publishers.

    Google Scholar 

  • Jones, A. B., Dennison, W. C., & Preston, N. P. (2001). Integrated treatment of shrimp effluent by sedimentation, oyster filtration and macroalgal absorption: a laboratory scale study. Aquaculture, 193, 155–178.

  • Jordan, T. E., & Correll, D. L. (1991). Continuous automated sampling of tidal exchanges of nutrients by brackish marshes. Estuarine, Coastal and Shelf Science, 32, 527–545.

    Article  CAS  Google Scholar 

  • Jørgensen, B. B., & Schippers, A. (2002). Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments. Geochimica et Cosmochimica Acta, 66, 85–92.

    Article  Google Scholar 

  • Jørgensen, C. J., Jacobsen, O. S., Elberling, B., & Aamand, J. (2009). Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. Environmental Science and Technology, 43, 4851–4857.

    Article  Google Scholar 

  • Katsaounos, C. Z., Giokas, D. L., & Leonardos, I. D. (2007a). Speciation of phosphorus fractionation in river sediments by explanatory data analysis. Water Research, 41, 406–418.

    Article  CAS  Google Scholar 

  • Katsaounos, C. Z., Giokas, D. L., Vlessidis, A. G., & Karayannis, M. I. (2007b). Identification of longitudinal and temporal patterns of phosphorus fractionation in river sediments by non-parametric statistics and pattern recognition techniques. Desalination, 213, 311–333.

    Article  CAS  Google Scholar 

  • Kautsky, N., Rönnbäck, P., Tedengren, M., & Troell, M. (2000). Ecosystem perspectives on management of disease in shrimp pond farming. Aquaculture, 191, 145–161.

    Article  Google Scholar 

  • Kirk, G. (2006). The biogeochemistry of submerged soils. England: John Wiley & Sons, Ltd.

    Google Scholar 

  • Kottek, M., Griesser, J., Beck, C., Rudolf, B., & Bubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.

    Article  Google Scholar 

  • Kristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: a review. Aquatic Botany, 89, 201–219.

    Article  CAS  Google Scholar 

  • Lacerda, L. D. (2006). Inputs of nitrogen and phosphorus to estuaries of northeastern Brazil from intensive shrimp farming. Brazilian Journal of Aquatic Sciences and Technology, 10, 13–27.

    Article  Google Scholar 

  • Lacerda, L. D., Sena, D. D. (2005). Estimativas de cargas de nitrogênio, fósforo e metais pesados de interesse ambiental para as bacias inferiores do litoral do Estado do Ceará. Estimativas de cargas de nitrogênio, fósforo e metais pesados de interesse ambiental para as bacias inferiores do litoral do Estado do Ceará.

  • Lacerda, L. D., Vaisman, A. G., Maia, L. P., Silva, C. A. R., & Cunha, E. M. S. (2006). Relative importance of nitrogen and phosphorus emissions from shrimp farming and other anthropogenic sources for six estuaries along the NE Brazilian coast. Aquaculture, 253, 433–446.

    Article  Google Scholar 

  • Lin, C., & Melvile, M. D. (1992). Mangrove soil: a potential contamination source to estuarine ecosystem of Australia. Wetlands, 11, 68–75.

    CAS  Google Scholar 

  • Lord, C. J., III. (1982). A selective and precise method for pyrite determination in sedimentary materials. Journal of Sedimentary Petrology, 52, 664–666.

    Article  CAS  Google Scholar 

  • Marchand, C., Lallier-Vergès, E., & Allenbach, M. (2011). Redox conditions and heavy metals distribution in mangrove forests receiving effluents from shrimp farms (Teremba Bay, New Caledonia). Journal of Soils and Sediments, 11, 529–541.

    Article  CAS  Google Scholar 

  • Martinez-Alier, J. (2001). Ecological conflicts and valuation—mangroves vs. shrimp in the late 1990s. Available in: <http://www.recercat.net/bitstream/2072/1217/1/UHE4-2001.pdf>.

  • Molisani, M. M., Cruz, A. L. V., & Maia, L. P. (2006). Estimation of fresh water river discharge to estuaries in Ceará State, Brazil. Arquivos de Ciências do Mar, 39, 53–60.

    Google Scholar 

  • Moutin, T., Picot, B., Ximenes, M. C., & Bontoux, J. (1993). Seasonal variations of compounds and their concentrations in two coastal lagoons. Hydrobiologia, 252, 45–49.

    Article  CAS  Google Scholar 

  • Nóbrega, G.N., Ferreira, T.O., Romero, R.E., Marques, A.G.B., Otero, X.L. (2013). Iron and sulfur geochemistry in semi-arid mangrove soils (Ceará, Brazil) in relation to seasonal changes and shrimp farming effluents. Environmental Monitoring and Assessment, 1–15 (on line first). doi 10.1007/s10661-013-3108-4.

  • Nordhaus, I., Diele, K., & Wolff, M. (2009). Activity patterns, feeding and burrowing behavior of the crab Ucides cordatus (Ucididae) in a high intertidal mangrove forest in North Brazil. Journal of Experimental Marine Biology and Ecology, 374, 104–112.

    Article  Google Scholar 

  • Otero, X. L., Ferreira, T. O., Huerta-Diaz, M. A., Partiti, C. S. M., Souza Júnior, V. S., Vidal-Torrado, P., et al. (2009). Geochemistry of iron and manganese in soils and sediments of a mangrove system, Island of Pai Matos (Cannaneia,-SP-Brazil). Geoderma, 148, 318–335.

    Article  CAS  Google Scholar 

  • Páez-Osuna, F., Guerrero-Galván, S. R., Ruiz-Fernández, A. C., & Espinoza-Angulo, R. (1997). Fluxes and mass balances of nutrients in a semi-intensive shrimp farm in North-western Mexico. Marine Pollution Bulletin, 34, 290–297.

    Article  Google Scholar 

  • Páez-Osuna, F., Guerrero-Galván, S. R., & Ruiz-Fernández, A. C. (1998). The environmental impact of shrimp aquaculture and the coastal pollution in Mexico. Marine Pollution Bulletin, 36, 65–75.

    Article  Google Scholar 

  • Páez-Osuna, F., Guerrero-Galván, S. R., & Ruiz-Fernández, A. C. (1999). Discharge of nutrients from shrimp farming to coastal waters of the Gulf of California. Marine Pollution Bulletin, 38, 585–592.

    Article  Google Scholar 

  • Paludan, C., & Jensen, H. S. (1995). Sequential extraction of phosphorus in freshwater wetland and lake sediments: significance of humic acids. Wetlands, 15, 365–373.

  • Paludan, C., & Morris, J. T. (1999). Distribution and speciation of phosphorus along a salinity gradient in intertidal marsh sediments. Biogeochemistry, 45, 197–221.

  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633–1644.

    Article  Google Scholar 

  • Renjith, K. R., Chandramohanakumar, N., & Joseph, M. M. (2011). Fractionation and bioavailability of phosphorus in a tropical estuary, Southwest India. Environmental Monitoring and Assessment, 174, 299–312.

    Article  CAS  Google Scholar 

  • Robertson, A. I., & Phillips, M. J. (1995). Mangroves as filters of shrimp pond effluents: predictions and biogeochemical research needs. Hydrobiologia, 295, 311–321.

    Article  CAS  Google Scholar 

  • Rydin, E. (2000). Potentially mobile phosphorus in Lake Erken sediment. Water Research, 34, 2037–2042.

    Article  CAS  Google Scholar 

  • Sales, J.C. (2008) Climatic characterization and comparison of estimated methods of the reference evapotranspiration in the regions of Ceará state. Thesis. Botucatu, Universidade Estadual Paulista

  • Schaeffer-Novelli, Y., Cintrón-Molero, G., Adaime, R. R., & de Camargo, T. M. (1990). Variability of mangrove ecosystems along the Brazilian coast. Estuaries, 13(2), 204--218.

  • SEMACE—Superintendência Estadual do Meio Ambiente. Atlas dos manguezais do Nordeste do Brasil: Avaliação das áreas de manguezais dos Estados do Piauí, Ceará, Rio Grande do Norte, Paraíba e Pernambuco. Fortaleza: SEMACE; 2006.

  • Smith, V. H. (2009). Eutrophication. In G. E. Likens (Ed.), Encyclopedia of inland waters (pp. 61–73). Oxford: Academic.

    Chapter  Google Scholar 

  • Soares, A.M.L., Barreto, R.N.C., Soares, Z.M.L., Carvalho. M.S.B.S (2007). Análise temporal do crescimento da carcinicultura marinha no estuário do rio Jaguaribe-Ceará. In: Anais do XIII Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis

  • Soares, A.M.L., Carvalho, M.S.B.S., Soares, Z.M.L., Almeida, M.A.G., Freitas Filho, M.R., Andrade, R.I.L., Castro, G.L., Oliveira, P.C., Alexandre, Y.R. (2011) Mapeamento da carcinicultura marinha na zona costeira do Estado do Ceará utilizando imagens do satélite RsourceSat−1. In Anais XV Simpósio Brasileiro de Sensoriamento Remoto – SBSR. (pp.7021) Curitiba:INPE

  • Søndergaard, M., Windolf, J., & Jeppesen, E. (1996). Phosphorus fractions and profiles in the sediment of shallow Danish lakes as related to phosphorus load, sediment composition and lake chemistry. Water Research, 30, 992–1002.

    Article  Google Scholar 

  • Sonnenholzner, S., & Boyd, C. E. (2000). Chemical and physical properties of shrimp pond bottom soils in Ecuador. Journal of the World Aquaculture Society, 31, 358–375.

    Article  Google Scholar 

  • Strickland, T.D., Parsons, T.R.A. (1972). Practical handbook of seawater analysis. 2nd ed. Fisheries Research Board of Canada.

  • Tappin, A. D. (2002). An examination of the fluxes of N and P in temperate and tropical estuaries: current estimates and uncertainties. Estuarine, Coastal and Shelf Science, 55, 885–901.

    Article  CAS  Google Scholar 

  • Thunjai, T., Boyd, C. E., & Boonyaratpalin, M. (2004). Quality of liming materials used in aquaculture in Thailand. Aquaculture International, 12, 161–168.

    Article  Google Scholar 

  • Tian-Yen, Y. (1985). Soil and plants. In Y. Ian-Yen (Ed.), Physical chemistry of paddy soils (pp. 197–214). Berlin: Springer.

    Google Scholar 

  • Trott, L. A., McKinnon, A. D., Alongi, D. M., Davidson, A., & Burford, M. A. (2004). Carbon and nitrogen process in a mangrove creek receiving shrimp farm effluent. Estuarine, Coastal and Shelf Science, 59, 197–207.

    Article  CAS  Google Scholar 

  • Turner, B. L., Cade-Menum, B. J., Condron, L. M., & Newman, S. (2005). Extraction of soil organic phosphorus. Talanta, 66, 294–306.

    Article  CAS  Google Scholar 

  • Twilley, R. R., & Rivera-Monroy, V. H. (2005). Developing performance measures of mangrove wetlands using simulation models of hydrology, nutrient biogeochemistry, and community dynamics. Journal of Coastal Research, 40, 79–93.

    Google Scholar 

  • Twilley, R.R.; Rivera-Monroy, V.H. (2009). Ecogeomorphic models of nutrient biogeochemistry for mangrove wetlands, in: Perillo, G.M.E.et al.(Ed.) (2009). Coastal wetlands: an integrated ecosystem approach. pp. 641–683.

  • Vepraskas, M. J., & Faulkner, S. P. (2009). Redox chemistry of hydric soils. In J. L. Richardson & M. J. Vepraskas (Eds.), Wetland soils: genesis, hydrology, landscapes and classification (pp. 85–106). Florida: Lewis Publishers.

    Google Scholar 

  • Wang, P., He, M., Lin, C., Men, B., Liu, R., Quan, X., et al. (2009). Phosphorus distribution in the estuarine sediments of the Daliao river, China. Estuarine, Coastal and Shelf Science, 84, 246–252.

    Article  CAS  Google Scholar 

  • Watanable, F. S., & Olsen, S. (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America Journal, 29, 677–678.

    Article  Google Scholar 

  • Wolaver, T. G., Johnson, W., & Marozas, M. (1984). Nitrogen and phosphorus concentrations within North Inlet, South Carolina—speculation as to sources and sinks. Estuarine, Coastal and Shelf Science, 19, 243–255.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author is grateful for financial support from the Programa de Educação Tutorial (PET Agronomia/UFC/MEC/SESu) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. O. Ferreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nóbrega, G.N., Otero, X.L., Macías, F. et al. Phosphorus geochemistry in a Brazilian semiarid mangrove soil affected by shrimp farm effluents. Environ Monit Assess 186, 5749–5762 (2014). https://doi.org/10.1007/s10661-014-3817-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3817-3

Keywords

Navigation