Skip to main content

Advertisement

Log in

Characteristics of soil contamination by potentially toxic elements in mine areas of Mongolia

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Soil contamination by potentially toxic elements (PTEs), such as metal(loid)s, in mining areas was characterized on a nationwide scale in Mongolia to understand the contamination status throughout the country, according to mine types. Positive matrix factorization (PMF) analysis exhibited better classification and explanation of soil contamination according to ore types compared to conventional statistical analysis methods such as principal component analysis (PCA) and hierarchical cluster analysis (HCA). The results of PMF analysis for metal(loid) contents in 1425 topsoil samples collected from 272 mines illuminated four Factors, which primarily contributed to As (Factor 1), Pb, Zn, and Cd (Factor 2), Ni (Factor 3), and Cu and Cd (Factor 4) contaminations, respectively. In hard-rock gold mines, As was enriched and the contribution of Factor 1 was high (31.2%) due to the affinity between As and Au. In placer gold mines, the contribution of Factor 3 (41.8%) was high due to the affinity between Ni and weathering-resistant heavy minerals. For base metal, fluorite, and coal mines, contributions of Factors 2 (32.1–50.9%) and 4 (17.7–33.6%) were high owing to sulfides containing Pb–Zn–d and Cu. These impacts of mine types were altered by local geology (e.g., skarn). Meanwhile, Hg amalgamation contributed to Hg contamination in a few hard-rock gold mines. These results suggest that soil contaminants in mining areas are mainly affected by the type of deposits with geochemical affinities, region-specific ore characteristics, and artificial processing. Understanding these effects will help establish national strategies for countermeasures, such as soil rehabilitation in mining areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abowaly, M. E., Belal, A. A. A., Abd Elkhalek, E. E., Elsayed, S., Abou Samra, R. M., Alshammari, A. S., Moghanm, F. S., Shaltout, K. H., Alamri, S. A. M., & Eid, E. M. (2021). Assessment of soil pollution levels in North Nile Delta, by integrating contamination indices, GIS, and multivariate modeling. Sustainability, 13(14), 8027.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (2012). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (Vol. 22). Springer Science & Business Media.

  • Anticoi, H., Alfonso, P., Bascompta, M., & Palacios, S. (2016). Mineral processing analysis in artisanal gold mining, Peru. International Journal of Mining, Materials, 2(1), 20–23.

    Google Scholar 

  • Atlas, A. M. (2016). Australian Atlas of mineral resources, mines and processing centres.

  • Averill, S. (2011). Viable indicator minerals in surficial sediments for two major base metal deposit types: Ni-Cu-PGE and porphyry Cu. Geochem.: Explor Environ. Anal., 11, 279–291.

    CAS  Google Scholar 

  • Ayres, R. U., Ayres, L. W., & Råde, I. (2013). The life cycle of copper, Its Co-products and Byproducts (Vol. 13). Springer Science & Business Media.

  • Badarch, G. (2005). Tectonic overview of Mongolia. Mongolian Geoscientist, 27, 1–7.

    Google Scholar 

  • Batsaikhan, B., Kwon, J.-S., Kim, K.-H., Lee, Y.-J., Lee, J.-H., Badarch, M., & Yun, S.-T. (2017). Hydrochemical evaluation of the influences of mining activities on river water chemistry in central northern Mongolia. Environmental Science and Pollution Research, 24(2), 2019–2034.

    Article  CAS  Google Scholar 

  • Battogtokh, B., Lee, J. M., & Woo, N. (2014). Contamination of water and soil by the Erdenet copper–molybdenum mine in Mongolia. Environment and Earth Science, 71(8), 3363–3374.

    Article  CAS  Google Scholar 

  • Boyle, R., & Jonasson, I. R. (1973). The geochemistry of arsenic and its use as an indicator element in geochemical prospecting. Journal of Geochemical Exploration, 2(3), 251–296.

    Article  CAS  Google Scholar 

  • Chai, L., Wang, Y., Wang, X., Ma, L., Cheng, Z., Su, L., & Liu, M. (2021). Quantitative source apportionment of heavy metals in cultivated soil and associated model uncertainty. Ecotoxicology and Environmental Safety, 215, 112150. https://doi.org/10.1016/j.ecoenv.2021.112150

    Article  CAS  Google Scholar 

  • Chapman, A., Davies, W., & Downey, C. (2021). Climate risk country profile: Mongolia. Asian Development Bank.

  • Chen, H., Lu, X., Li, L. Y., Gao, T., & Chang, Y. (2014). Metal contamination in campus dust of Xi’an, China: A study based on multivariate statistics and spatial distribution. Science of the Total Environment, 484, 27–35.

    Article  CAS  Google Scholar 

  • Cheng, W., Lei, S., Bian, Z., Zhao, Y., Li, Y., & Gan, Y. (2020). Geographic distribution of heavy metals and identification of their sources in soils near large, open-pit coal mines using positive matrix factorization. Journal of Hazardous Materials, 387, 121666.

    Article  CAS  Google Scholar 

  • Cheng, X., Danek, T., Drozdova, J., Huang, Q., Qi, W., Zou, L., Yang, S., Zhao, X., & Xiang, Y. (2018). Soil heavy metal pollution and risk assessment associated with the Zn-Pb mining region in Yunnan, Southwest China. Environmental Monitoring and Assessment, 190(4), 1–16.

    Article  CAS  Google Scholar 

  • Cressey, B., & Cressey, G. (1988). Preliminary mineralogical investigation of Leicestershire low-rank coal. International Journal of Coal Geology, 10(2), 177–191.

    Article  CAS  Google Scholar 

  • Daley, E., Lanz, K., Narangerel, Y., Driscoll, Z., Lkhamdulam, N., Grabham, J., Suvd, B., & Munkhtuvshin, B. (2018). Gender, land and mining in Mongolia. In: Mokoro Ltd & PCC Mongolia.

  • Davies, B. E. (1983). Heavy metal contamination from base metal mining and smelting: Implications for man and his environment, Chap. 14. Applied environmental geochemistry. Academic Press.

  • Deditius, A. P., Reich, M., Kesler, S. E., Utsunomiya, S., Chryssoulis, S. L., Walshe, J., & Ewing, R. C. (2014). The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochimica et Cosmochimica Acta, 140, 644–670.

    Article  CAS  Google Scholar 

  • Dhaliwal, S. S., Singh, J., Taneja, P. K., & Mandal, A. (2020). Remediation techniques for removal of heavy metals from the soil contaminated through different sources: A review. Environmental Science and Pollution Research, 27(2), 1319–1333.

    Article  Google Scholar 

  • Dong, B., Zhang, R. Z., Gan, Y. D., Cai, L. Q., Freidenreich, A., Wang, K. P., Guo, T. W., & Wang, H. B. (2018). Multiple methods for the identification of heavy metal sources in cropland soils from a resource-based region. Science of the Total Environment, 651, 3127–3138.

    Article  Google Scholar 

  • Dudka, S., & Adriano, D. C. (1997). Environmental impacts of metal ore mining and processing: A review. Journal of Environmental Quality, 26(3), 590–602.

    Article  CAS  Google Scholar 

  • Dupuis, C., & Beaudoin, G. (2011). Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineralium Deposita, 46(4), 319–335.

    Article  CAS  Google Scholar 

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 114(3), 313–324.

    Article  CAS  Google Scholar 

  • Forján, R., Baragaño, D., Boente, C., Fernández-Iglesias, E., Rodríguez-Valdes, E., & Gallego, J. L. R. (2019). Contribution of fluorite mining waste to mercury contamination in coastal systems. Marine Pollution Bulletin, 149, 110576. https://doi.org/10.1016/j.marpolbul.2019.110576

    Article  CAS  Google Scholar 

  • Franz, C., Makeschin, F., Weiß, H., & Lorz, C. (2013). Geochemical signature and properties of sediment sources and alluvial sediments within the Lago Paranoá catchment, Brasilia DF: A study on anthropogenic introduced chemical elements in an urban river basin. Science of the Total Environment, 452, 411–420.

    Article  Google Scholar 

  • Gallego, J. L. R., López-Antón, M. A., Rosa, D. M., Rodríguez-Valdés, E., García-González, N., Rodríguez, E., & Martínez-Tarazona, M. R. (2019). Assessment of mercury pollution sources in beach sand and coastal soil by speciation analysis. Environmental Sciences Europe, 31, 79. https://doi.org/10.1186/s12302-019-0264-3

    Article  CAS  Google Scholar 

  • George, L. L., Cook, N. J., & Ciobanu, C. L. (2016). Partitioning of trace elements in co-crystallized sphalerite–galena–chalcopyrite hydrothermal ores. Ore Geology Reviews, 77, 97–116.

    Article  Google Scholar 

  • Gerel, O., Pirajno, F., Batkhishig, B., & Dostal, J. (2021). Mineral resources of Mongolia. Springer.

    Book  Google Scholar 

  • Germann, K., Lüders, V., Banks, D. A., Simon, K., & Hoefs, J. (2003). Late Hercynian polymetallic vein-type base-metal mineralization in the Iberian Pyrite Belt: Fluid-inclusion and stable-isotope geochemistry (S–O–H–Cl). Mineralium Deposita, 38(8), 953–967.

    Article  CAS  Google Scholar 

  • Ghrefat, H., Zaman, H., Batayneh, A., El Waheidi, M. M., Qaysi, S., Al-Taani, A., & Badhris, O. (2021). Assessment of heavy metal contamination in the soils of the Gulf of Aqaba (Northwestern Saudi Arabia): Integration of geochemical, remote sensing, GIS, and statistical data. Journal of Coastal Research, 37(4), 864–872.

    Article  CAS  Google Scholar 

  • Guan, Q., Wang, F., Xu, C., Pan, N., Lin, J., Zhao, R., Yang, Y., & Luo, H. (2018). Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere, 193, 189–197.

    Article  CAS  Google Scholar 

  • Hamzeh, M., Shafiei Bafti, B., & Omrani, H. (2020). Trace elements geochemistry of galena in fluorite deposits from central Alborz, Mazandaran Province. Journal of Economic Geology, 12(2), 227–247.

    Google Scholar 

  • Hani, A., & Pazira, E. (2011). Heavy metals assessment and identification of their sources in agricultural soils of Southern Tehran, Iran. Environmental Monitoring and Assessment, 176(1), 677–691.

    Article  CAS  Google Scholar 

  • He, Z., Shentu, J., Yang, X., Baligar, V. C., Zhang, T., & Stoffella, P. J. (2015). Heavy metal contamination of soils: Sources, indicators and assessment. Journal of Environmental Indicators, 9, 17–18.

    Google Scholar 

  • Helble, M., Hill, H., & Magee, D. (2020). Mongolia's economic prospects: Resource-rich and landlocked between two giants. Asian Development Bank.

  • Hilson, G. M., Mcquilken, J. T., Perks, R. B., Faulkner, S., Lahiri-Dutt, K., Primus, U., Smith, E., & Singo, P. (2021). State of the artisanal and small-scale mining sector 2019 from delve.

  • Hopke, P. K. (2000). A guide to positive matrix factorization. Workshop on UNMIX and PMF as Applied to PM2 (p. 600).

  • Iglesias, J. G., & Loredo, J. (1994). Geological, geochemical and mineralogical characteristics of the Asturias fluorspar district, northern Spain. Exploration and Mining Geology, 1, 31–37.

    Google Scholar 

  • Inam, E., Khantotong, S., Kim, K.-W., Tumendemberel, B., Erdenetsetseg, S., & Puntsag, T. (2011). Geochemical distribution of trace element concentrations in the vicinity of Boroo gold mine, Selenge Province, Mongolia. Environmental Geochemistry and Health, 33(1), 57–69.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2000). Trace elements in soils and plants. CRC Press.

    Book  Google Scholar 

  • Karaca, O. (2019). Environmental impact of mine wastes: An overview of problems with mining sites in Turkey, remediation possibilities, and an example from Turkey. Environmental Geotechnology, 63–72.

  • Kasimov, N., Kosheleva, N., Gunin, P., Korlyakov, I., Sorokina, O., & Timofeev, I. (2016). State of the environment of urban and mining areas in the Selenga Transboundary River Basin (Mongolia Russia).). Environment and Earth Science, 75(18), 1–20.

    Article  CAS  Google Scholar 

  • Khalef, R. N., Hassan, A. I., & Saleh, H. M. (2022). Heavy Metal’s Environmental Impact. In H. M. Saleh, A. I. Hassan (Eds.), Environmental Impact and Remediation of Heavy Metals, IntechOpen

  • Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247–268.

    Article  CAS  Google Scholar 

  • Khishgee, C. (2015). Orogenic type gold mineralization in the North Khentei gold belt. Simane University.

    Google Scholar 

  • Kim, D.-M., Kwon, H.-L., & Im, D.-G. (2023). Determination of contamination sources and geochemical behaviors of metals in soil of a mine area using Cu, Pb, Zn, and S isotopes and positive matrix factorization. Journal of Hazardous Materials, 447, 130827. https://doi.org/10.1016/j.jhazmat.2023.130827

    Article  CAS  Google Scholar 

  • Kim, D.-M., Yun, S.-T., Cho, Y., Hong, J.-H., Batsaikhan, B., & Oh, J. (2017). Hydrochemical assessment of environmental status of surface and ground water in mine areas in South Korea: Emphasis on geochemical behaviors of metals and sulfate in ground water. Journal of Geochemical Exploration, 183, 33–45.

    Article  CAS  Google Scholar 

  • Kim, J.-H., Kim, K.-H., & Yoo, S.-H. (2022). Evaluating and ranking the mining damage prevention programs in South Korea: An application of the fuzzy set theory. Resources Policy, 78, 102873.

    Article  Google Scholar 

  • Komorowski, C. C., El Goresy, A., Miyahara, M., Boudouma, O., & Ma, C. (2012). Discovery of Hg–Cu-bearing metal-sulfide assemblages in a primitive H-3 chondrite: Towards a new insight in early solar system processes. Earth and Planetary Science Letters, 349, 261–271.

    Article  Google Scholar 

  • Lee, C. S. L., Li, X., Shi, W., Cheung, S. C. N., & Thornton, I. (2006). Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Science of the Total Environment, 356(1–3), 45–61.

    Article  CAS  Google Scholar 

  • Li, J., Pu, L., Liao, Q., Zhu, M., Dai, X., Xu, Y., & Jin, Y. (2015). How anthropogenic activities affect soil heavy metal concentration on a broad scale: A geochemistry survey in Yangtze River Delta, Eastern China. Environment and Earth Science, 73(4), 1823–1835.

    Article  CAS  Google Scholar 

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468, 843–853.

    Article  Google Scholar 

  • Liu, H., Anwar, S., Fang, L., Chen, L., Xu, W., Xiao, L., Zhong, B., & Liu, D. (2022). Source apportionment of agricultural soil heavy metals based on PMF model and multivariate statistical analysis. Environmental Forensics, 1–9.

  • Liu, Y., Jiang, S., & Bagas, L. (2016). The genesis of metal zonation in the Weilasituo and Bairendaba Ag–Zn–Pb–Cu–(Sn–W) deposits in the shallow part of a porphyry Sn–W–Rb system, Inner Mongolia, China. Ore Geology Reviews, 75, 150–173.

    Article  Google Scholar 

  • Lkhamsuren, J., & Majigsuren, Y. (2021). Fluorite deposits. In Mineral resources of mongolia (pp. 319–347). Springer.

  • Lorand, J.-P., & Luguet, A. (2016). Chalcophile and siderophile elements in mantle rocks: Trace elements controlled by trace minerals. Reviews in Mineralogy and Geochemistry, 81(1), 441–488.

    Article  Google Scholar 

  • Lu, H.-Z., Liu, Y., Wang, C., Xu, Y., & Li, H. (2003). Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China. Economic Geology, 98(5), 955–974.

    Article  CAS  Google Scholar 

  • Ma, L., Sun, J., Yang, Z., & Wang, L. (2015). Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China. Environmental Monitoring and Assessment, 187(12), 1–9.

    Article  CAS  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58, 201–235. https://doi.org/10.1016/S0039-9140(02)00268-0

    Article  CAS  Google Scholar 

  • Meinert, L. D., Dipple, G. M., & Nicolescu, S. (2005). World skarn deposits. Econ. Geol. 100th anniversary Volume, 299−336.

  • MRPAM (2018). Monthly statistical bulletin, december. Mineral resources and petroleum authority of Mongolia, Ulaanbaatar.

  • Mudd, G. M., & Jowitt, S. M. (2014). A detailed assessment of global nickel resource trends and endowments. Economic Geology, 109(7), 1813–1841.

    Article  CAS  Google Scholar 

  • Müller, G. (1969). Index of geo-accumulation in sediments of the Rhine River. Geological Journal, 2, 108–118.

    Google Scholar 

  • Nottebaum, V., Walk, J., Knippertz, M., Karthe, D., Batbayar, G., Pötter, S., & Lehmkuhl, F. (2020). Arsenic distribution and pathway scenarios for sediments and water in a peri-urban Mongolian small-scale coal mining area (Nalaikh District, Ulaanbaatar). Environmental Science and Pollution Research, 27(6), 5845–5863.

    Article  CAS  Google Scholar 

  • Nriagu, J. O. (1989). A global assessment of natural sources of atmospheric trace metals. Nature, 338(6210), 47–49.

    Article  CAS  Google Scholar 

  • Ololade, I. A. (2014). An assessment of heavy-metal contamination in soils within auto-mechanic workshops using enrichment and contamination factors with geoaccumulation indexes. Journal of Environmental Protection, 5, 970–982.

    Article  Google Scholar 

  • Peplow, D. (1999). Environmental impacts of mining in Eastern Washington. University of Washington Water Center.

    Google Scholar 

  • Purvis, O., & Halls, C. (1996). A review of lichens in metal-enriched environments. The Lichenologist, 28(6), 571–601.

    Article  Google Scholar 

  • Qin, G., Niu, Z., Yu, J., Li, Z., Ma, J., & Xiang, P. (2021). Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere, 267, 129205.

    Article  CAS  Google Scholar 

  • Rajendiran, S., Dotaniya, M., Coumar, M. V., Panwar, N., & Saha, J. (2015). Heavy metal polluted soils in India: Status and countermeasures. JNKVV Research Journal, 49(3), 320–337.

    Google Scholar 

  • Rehman, K., Fatima, F., Waheed, I., & Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of Cellular Biochemistry, 119(1), 157–184.

    Article  CAS  Google Scholar 

  • Rodionov, S., Obolenskiy, A., Dejidmaa, G., Gerel, O., Hwang, D., Miller, R., Nokleberg, W., Ogasawara, M., Smelov, A., & Yan, H. (2004). Descriptions of metallogenic belts, methodology, and definitions for Northeast Asia mineral deposit location and metallogenic belt maps. US Geological Survey Open-File Report, 1252, 442.

    Google Scholar 

  • Salama, W., Anand, R. R., & Verrall, M. (2016). Mineral exploration and basement mapping in areas of deep transported cover using indicator heavy minerals and paleoredox fronts, Yilgarn Craton, Western Australia. Ore Geology Reviews, 72, 485–509.

    Article  Google Scholar 

  • Sanz, J., Tomasa, O., Jimenez-Franco, A. & Sidki-Rius, N. (2022). Zinc (Zn)[Z= 30]. In Elements and mineral resources (pp. 251–254). Springer.

  • Schubert, E. (2021). HACAM: Hierarchical agglomerative clustering around medoids-and its limitations. In LWDA (pp. 191–204).

  • Schwarz, J., Pokorná, P., Rychlík, Š, Škáchová, H., Vlček, O., Smolík, J., Ždímal, V., & Hůnová, I. (2019). Assessment of air pollution origin based on year-long parallel measurement of PM2.5 and PM10 at two suburban sites in Prague, Czech Republic. Science of the Total Environment, 664, 1107–1116.

    Article  CAS  Google Scholar 

  • Selley, R. C. (2000). Applied sedimentology. Elsevier.

    Google Scholar 

  • Seltmann, R., Porter, T. M., & Pirajno, F. (2014). Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: A review. Journal of Asian Earth Sciences, 79, 810–841.

    Article  Google Scholar 

  • Sinyakova, E., Kosyakov, V., Palyanova, G., & Karmanov, N. (2019). Experimental modeling of noble and chalcophile elements fractionation during solidification of Cu-Fe-Ni-S melt. Minerals, 9(9), 531.

    Article  CAS  Google Scholar 

  • Stylo, M., De Haan, J., & Davis, K. (2020). Collecting, managing and translating data into National Action Plans for artisanal and small scale gold mining. The Extractive Industries and Society, 7(1), 237–248.

    Article  Google Scholar 

  • Sucharovà, J., Suchara, I., Hola, M., Marikova, S., Reimann, C., Boyd, R., Filzmoser, P., & Englmaier, P. (2012). Top-/bottom-soil ratios and enrichment factors: Applied Geochemistry, 27, 138–145.

    Article  Google Scholar 

  • Swaine, D. (1994). Galena and sphalerite associated with coal seams. In Sediment-Hosted Zn-Pb Ores (pp. 59–73). Springer.

  • Tabelin, C. B., Igarashi, T., Tamoto, S., & Takahashi, R. (2012). The roles of pyrite and calcite in the mobilization of arsenic and lead from hydrothermally altered rocks excavated in Hokkaido, Japan. Journal of Geochemical Exploration, 119, 17–31.

    Article  Google Scholar 

  • Taylor, G., & Eggleton, R. A. (2001). Regolith geology and geomorphology. John Wiley & Sons.

    Google Scholar 

  • Timofeev, I., Kosheleva, N., & Kasimov, N. (2019). Health risk assessment based on the contents of potentially toxic elements in urban soils of Darkhan, Mongolia. Journal of Environmental Management, 242, 279–289.

    Article  CAS  Google Scholar 

  • Tomlinson, D. C., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy metals levels in estuaries and the formation of pollution index. Helgoländer Wissenschaftliche Meeresuntersuchungen, 33, 566–569.

    Article  Google Scholar 

  • Tomurtogoo, O. (2003). Tectonic Map of Mongolia at the Scale of 1: 1,000,000, and Tectonics of Mongolia (Brief Explanatory Notes to Tectonic Map of Mongolia at the scale of 1: 1,000,000). Mineral Resources Authority of Mongolia, Ulaanbaatar.

  • Tschakert, P., & Singha, K. (2007). Contaminated identities: Mercury and marginalization in Ghana’s artisanal mining sector. Geoforum, 38(6), 1304–1321.

    Article  Google Scholar 

  • UNEP. (2019). The nationnal action plan for reducing mercury pollution caused by artisnal and small scale gold mining in Mongolia 2019–2023

  • USEPA. (2000). Handbook for non-cancer health effects evaluation. EPA Science and Policy Council.

    Google Scholar 

  • Von der Goltz, J., & Barnwal, P. (2019). Mines: The local wealth and health effects of mineral mining in developing countries. Journal of Development Economics, 139, 1–16.

    Article  Google Scholar 

  • Wang, C., Pan, Y., Chen, J., Ouyang, Y., Rao, J., & Jiang, Q. (2020). Indicator element selection and geochemical anomaly mapping using recursive feature elimination and random forest methods in the Jingdezhen region of Jiangxi Province, South China. Applied Geochemistry, 122, 104760.

    Article  CAS  Google Scholar 

  • Weissmannová, H. D., & Pavlovský, J. (2017). Indices of soil contamination by heavy metals–methodology of calculation for pollution assessment (minireview). Environmental Monitoring and Assessment, 189(12), 1–25.

    Article  Google Scholar 

  • Wells, J. T., & Ghiorso, M. S. (1988). Rock alteration, mercury transport, and metal deposition at Sulphur Bank, California. Economic Geology, 83(3), 606–618.

    Article  CAS  Google Scholar 

  • Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L., & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 642, 690–700.

    Article  CAS  Google Scholar 

  • Yao, J., Hua, R., Qu, W., Qi, H., Lin, J., & Du, A. (2007). Re-Os isotope dating of molybdenites in the Huangshaping Pb-Zn-W-Mo polymetallic deposit, Hunan Province, South China and its geological significance. Science in China Series D: Earth Science, 50(4), 519–526.

    Article  CAS  Google Scholar 

  • Yao, Z., Li, J., Xie, H., & Yu, C. (2012). Review on remediation technologies of soil contaminated by heavy metals. Procedia Environmental Sciences, 16, 722–729.

    Article  CAS  Google Scholar 

  • Yoon, S., Kim, D. M., Yu, S., Park, J., & Yun, S. T. (2023). Metal (loid)-specific sources and distribution mechanisms of riverside soil contamination near an abandoned gold mine in Mongolia. Journal of Hazardous Materials, 443, 130294.

    Article  CAS  Google Scholar 

  • Zamora-Ledezma, C., Negrete-Bolagay, D., Figueroa, F., Zamora-Ledezma, E., Ni, M., Alexis, F., & Guerrero, V. H. (2021). Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environmental Technology and Innovation, 22, 101504.

    Article  CAS  Google Scholar 

  • Zandariya, B. (2022). Improving the policy framework for financial assurance for mine closure in Mongolia. Resources Policy, 77, 102628.

    Article  Google Scholar 

  • Zhu, X.-Y., Zhang, Z.-H., Fu, X., Li, B.-Y., Wang, Y.-L., Jiao, S.-T., & Sun, Y.-L. (2016). Geological and geochemical characteristics of theWeilasito Sn-Zn deposit, Inner Mongolia. Geology in China, 43(1), 188–208.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was partly supported by the Korea International Cooperation Agency (KOICA) and conducted as an ODA project for Mongolia. It was also supported by the Korea Environmental Industry and Technology Institute (KEITI) through the project entitled “Integrated environmental forensic approaches to trace source and pathways of subsurface contaminants” funded by the Korea Ministry of Environment (MOE) (2021002440003). In addition, the third author (Soonyoung Yu) was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Science and ICT (23-3411). The authors appreciate the support of the Korea Mine Rehabilitation and Mineral Resources Corporation (KOMIR) in Korea, MIRECO MGL in Mongolia, and the Mineral Resources Authority of Mongolia for conducting field surveys and chemical analyses. Special thanks go to anonymous reviewers for providing constructive comments that helped to improve the manuscript.

Funding

The funding was supported by Korea International Cooperation Agency, Korea Environmental Industry and Technology Institute (Grant No. 2021002440003), Korea Institute of Geoscience and Mineral Resources (Grant No. 23-3411).

Author information

Authors and Affiliations

Authors

Contributions

SY: Conceptualization, Methodology, Data curation, Investigation, Formal analysis, Writing—Original Draft and Editing. D-MK: Conceptualization, Methodology, Writing—Original Draft and Editing, Supervision. SY: Formal analysis, Writing—Original Draft and Editing. BB: Writing—Review. TK: Investigation, Data curation. S-TY: Conceptualization, Writing—Review, Project administration, Supervision.

Corresponding authors

Correspondence to Duk-Min Kim or Seong-Taek Yun.

Ethics declarations

Conflict of interest

We declare no conflicts of interest. We do not have any financial and personal relationships with other people or organizations that could inappropriately influence our work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2558 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, S., Kim, DM., Yu, S. et al. Characteristics of soil contamination by potentially toxic elements in mine areas of Mongolia. Environ Geochem Health 46, 15 (2024). https://doi.org/10.1007/s10653-023-01812-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-023-01812-4

Keywords

Navigation