Skip to main content
Log in

Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Magnetite and hematite are common minerals in a range of mineral deposit types. These minerals form partial to complete solid solutions with magnetite, chromite, and spinel series, and ulvospinel as a result of divalent, trivalent, and tetravalent cation substitutions. Electron microprobe analyses of minor and trace elements in magnetite and hematite from a range of mineral deposit types (iron oxide-copper-gold (IOCG), Kiruna apatite–magnetite, banded iron formation (BIF), porphyry Cu, Fe-Cu skarn, Fe-Ti, V, Cr, Ni-Cu-PGE, Cu-Zn-Pb volcanogenic massive sulfide (VMS) and Archean Au-Cu porphyry and Opemiska Cu veins) show compositional differences that can be related to deposit types, and are used to construct discriminant diagrams that separate different styles of mineralization. The Ni + Cr vs. Si + Mg diagram can be used to isolate Ni-Cu-PGE, and Cr deposits from other deposit types. Similarly, the Al/(Zn + Ca) vs. Cu/(Si + Ca) diagram can be used to separate Cu-Zn-Pb VMS deposits from other deposit types. Samples plotting outside the Ni-Cu-PGE and Cu-Zn-Pb VMS fields are discriminated using the Ni/(Cr + Mn) vs. Ti + V or Ca + Al + Mn vs. Ti + V diagrams that discriminate for IOCG, Kiruna, porphyry Cu, BIF, skarn, Fe-Ti, and V deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ancey M, Bastenaire F, Tixier R (1978) Application des méthodes statistiques en microanalyse. In: Maurice F, Meney L, Tixier R (eds) Microanalyse, microscopie électronique à balayage. Les Éditions du Physicien, Orsay, pp 323–347

    Google Scholar 

  • Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302

    Article  Google Scholar 

  • Beaudoin G, Hébert R, Wang CS, Tang J (2005) Epithermal Au-Ag-Cu, porphyry Cu-(Au-Mo) and Cu-Au-Ag-Zn-Pb skarn deposits of the Gangdese Arc, Tibet. In: Mao J, Bierlein FP (eds) Eighth biennial SGA meeting: mineral deposit research: meeting the global challenge. Springer, Beijing, pp 1219–1222

    Chapter  Google Scholar 

  • Beaudoin G, Dupuis C, Gosselin P, Jébrak M (2007) Mineral chemistry of iron oxides: application to mineral exploration. In: Andrew CJ (ed) Ninth Biennial SGA meeting. SGA, Dublin, pp 497–500

    Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Apatite as an indicator mineral for mineral exploration: trace–element compositions and their relationship to host rock type. J Geochem Explor 76:45–69

    Article  Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron–titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357

    Google Scholar 

  • Carew MJ (2004) Controls on Cu-Au mineralisation and Fe oxide metasomatism in the Eastern Fold Belt, N.W. Queensland, Australia. Unpublished Ph.D. thesis, James Cook University

  • Cimon J (1973) Possibility of an Archean porphyry copper in Quebec. Can Min J 94:97

    Google Scholar 

  • Davidson GJ, Large RR (1994) Gold metallogeny and the copper–gold association of the Australian Proterozoic. Miner Deposita 29:208–223

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to rock-forming minerals, 2nd edn. Longman, Harlow, Wiley, New York

    Google Scholar 

  • Diamandescu L, Mihaila-Tarabasanu D, Teodorescu V, Popescu-Pogrion N (1998) Hydrothermal synthesis and structural characterization of some substituted magnetites. Mater Lett 37:340–348

    Article  Google Scholar 

  • Fipke CE, Gurney JJ, Moore RO (1995) Diamond exploration techniques emphasising indicator mineral geochemistry and Canadian examples. GSC Bull 423

  • Fisher L, Kendrick M (2008) Metamorphic fluid origins in the Osborne Fe oxide-Cu-Au deposit, Australia: evidence from noble gases and halogens. Miner Deposita 43:483–497

    Article  Google Scholar 

  • Franklin JM, Gibson HL, Jonasson IR, Galley AG (2005) Volcanogenic massive sulfide deposits. Econ Geol 100th Anniversary Vol:523–560.

  • Fraser JF (1993) The Lac Troilus gold–copper deposit, Northwestern Quebec: a possible Archean porphyry system. Econ Geol 88:1685–1699

    Article  Google Scholar 

  • Furic R, Jébrak M (2005) Archean IOCG deposit in a fluidized dilational jog (Chibougamau, Abitibi, Canada). Geol Soc Amer Abstr Program 37:516

    Google Scholar 

  • Gosselin P, Beaudoin G, Jébrak M (2006) Application of the geochemical signature of iron oxides to mineral exploration. GAC-MAC Annual Meeting Prog Abs 31:CD-ROM

    Google Scholar 

  • Griffis AT (1979) An Archean “porphyry-type” disseminated copper deposit, Timmins, Ontario—a discussion. Econ Geol 74:695–696

    Article  Google Scholar 

  • Grigsby JD (1990) Detrital magnetite as a provenance indicator. J Sed Petrol 60:940–951

    Google Scholar 

  • Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron oxide copper-gold (IOCG) deposits through earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ Geol 105:641–654

    Google Scholar 

  • Hall JM, Fischer JF (1977) Opaque mineralogy of basement rocks, Leg 37. Init Rep Deep Sea Drill Proj 37:857–873

    Google Scholar 

  • Heimann A, Spry PG, Teale GS (2005) Zincian spinel associated with metamorphosed Proterozoic base-metal sulfide occurrences, Colorado: a re-evaluation of gahnite composition as a guide in exploration. Can Miner 43:601–622

    Article  Google Scholar 

  • Helsel D (2005) Nondetects and data analysis. Wiley, New York

    Google Scholar 

  • Hitzman MW, Oreskes NO, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Res 58:241–287

    Article  Google Scholar 

  • Hutton CO (1950) Studies of heavy detrital minerals. GSA Bull 61:635–713

    Article  Google Scholar 

  • Ilton ES, Eugster HP (1989) Base metal exchange between magnetite and a chloride-rich hydrothermal fluid. Geochim Cosmochim Acta 53:291–301

    Article  Google Scholar 

  • Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newsl 4:43–47

    Article  Google Scholar 

  • Johnson HP (1979) Opaque mineralogy of the igneous rock samples from DSDP hole 395A. Init Rep Deep Sea Drill Proj 45:407–420

    Google Scholar 

  • Layton-Matthews D, Peter JM, Scott SD, Leybourne M (2008) Distribution, mineralogy, and geochemistry of selenium in felsic volcanic-hosted massive sulfide deposits of the Finlayson Lake district, Yukon Territory, Canada. Econ Geol 103:61–88

    Article  Google Scholar 

  • Leach DL, Bradley DC, Huston D, Pisarevsky SA, Taylor RD, Gardoll SJ (2010) Sediment-hosted lead–zinc deposits in Earth history. Econ Geol 105:593–625

    Article  Google Scholar 

  • Lee L, Helsel D (2007) Statistical analysis of water-quality data containing multiple detection limits II: S-language software for nonparametric distribution modelling and hypothesis testing. Comput Geosci 33:696–704

    Article  Google Scholar 

  • Morton A, Yaxley G (2007) Detrital apatite geochemistry and its application in provenance studies. In: Arribas J, Critelli S, Johnsson MJ (eds) Geol Soc Amer Spec Paper 420:319–344

  • Nadoll P, Mauk JL, Hayes, TS, Koenig AE, Hofstra AH, Box SE (2009) Geochemistry of magnetite from hydrothermal ore deposits and their host rocks in the Proterozoic Belt Supergroup, USA. In: Williams et al. (eds) Smart science for exploration and mining, Proc 10th Biennial Meeting, Townsville, pp 129–131

  • Nielsen RL, Beard JS (2000) Magnetite-melt HFSE partitioning. Chem Geol 164:21–34

    Google Scholar 

  • Otake T, Wesolowski DJ, Anovitz LM, Allard LF, Ohmoto H (2010) Mechanisms of iron oxide transformations in hydrothermal systems. Geochim Cosmochim Acta 74:6141–6156

    Article  Google Scholar 

  • Pettijohn FJ, Potter PE, Siever R (1987) Sand and sandstone (2nd ed.), Springer, New York, pp 553

  • Pilote P, Guha J (1998) Métallogénie de l’extrémité est de la sous-province de l’Abitibi. In: Pilote (ed) Géologie et métallogénie du district minier de Chapais-Chibougamau; nouvelle vision du potentiel de découverte, DV 98-03, MNRF Québec, Canada, pp 29–44

  • Ramdohr P (1980) The ore minerals and their intergrowths. Pergamon, New York

    Google Scholar 

  • Razjigaeva NG, Naumova VV (1992) Trace element composition of detrital magnetite from coastal sediments of Northwestern Japan Sea for provenance study. J Sed Petrol 62:802–809

    Google Scholar 

  • Reguir EP, Chakhmouradian AR, Halden NM, Yang P, Zaitsev AN (2008) Early magmatic and reaction-induced trends in magnetite from the carbonatites of Kerimasi, Tanzania. Can Miner 46:879–900

    Article  Google Scholar 

  • Righter K, Leeman WP, Hervig RL (2006) Partitioning of Ni, Co and V between spinel-structured oxides and silicate melts: Importance of spinel composition. Chem Geol 227:1–25

    Article  Google Scholar 

  • Ronacher E, Richards JP, Reed MH, Bray CJ, Spooner ETC, Adams PD (2004) Characteristics and evolution of the hydrothermal fluid in the North zone high-grade area, Porgera gold deposit, Papua New Guinea. Econ Geol 99:843–867

    Article  Google Scholar 

  • Rusk B, Oliver N, Brown A, Lilly R, Jungmann D (2009) Barren magnetite breccias in the Cloncurry region, Australia; comparisons to IOCG deposits. In: Williams et al. (eds) Smart science for exploration and mining, Proc 10th Biennial Meeting, Townsville, pp 656–658

  • Sack RO, Ghiorso MS (1991) An internally consistent model for the thermodynamic properties of Fe − Mg-titanomagnetite-aluminate spinels. Contrib Mineral Petrol 106:474–505

    Article  Google Scholar 

  • Sauerzapf U, Lattard D, Burchard M, Engelmann R (2008) The titanomagnetite–ilmenite equilibrium: new experimental data and thermo-oxybarometric application to the crystallization of basic to intermediate rocks. J Petrol 49:1161–1185

    Article  Google Scholar 

  • Scheka SA, Platkov AV, Vezhosek AA, Levashov GB, Oktyabrsky RA (1980) The trace element paragenesis of magnetite. Nauka, Moscow, p 147

    Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Article  Google Scholar 

  • Singoyi B, Danyushevsky L, Davidson GJ, Large R, Zaw K (2006) Determination of trace elements in magnetites from hydrothermal deposits using the LA ICP-MS technique. SEG Keystone Conference, Denver, USA: CD-ROM

  • Smith MP (2007) Metasomatic silicate chemistry at the Bayan Obo Fe-REE-Nb deposit, Innner Mongolia, China: contrasting chemistry and evolution of fenitising and mineralising fluids. Lithos 93:126–148

    Article  Google Scholar 

  • Spry PG, Scott SD (1986) The stability of zincian spinels in sulfide systems and their potential as exploration guides for metamorphosed massive sulfide deposits. Econ Geol 81:1446–1463

    Article  Google Scholar 

  • Toplis M, Corgne A (2002) An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contrib Mineral Petrol 144:22–37

    Article  Google Scholar 

  • Walters SG, Skrzeczynski R, Whiting T, Bunting F, Arnold G (2002) Discovery and geology of the Cannington Ag-Pb-Zn deposit, Mount Isa Eastern Succession, Australia: development and application of an exploration model for Broken Hill-type deposits. Soc Econ Geol Spec Publ 9:95–118

    Google Scholar 

  • Wang Q, Wu A, Yu L, Liu Z, Xu W, Yang H (2009) Nanocomposites of iron-cobalt alloy and magnetite: controllable solvothermal synthesis and their magnetic properties. J Phys Chem C 113:19875–19882

    Article  Google Scholar 

  • Williams PJ (1994) Iron mobility during synmetamorphic alteration in the Selwyn Range area, NW Queensland: implications for the origin of ironstone-hosted Au-Cu deposits. Miner Deposita 29:250–260

    Article  Google Scholar 

  • Williams PJ, Barton MD, Johnson DA, Fontboté L, de Haller A, Mark G, Oliver NHS, Marschik R (2005) Iron oxide copper-gold deposits: geology, space–time distribution, and possible modes of origin. Econ Geol 100th Anniversary Vol: 371–405

Download references

Acknowledgments

This research has been funded by the DIVEX research network, the Geological Survey of Canada and the Natural Science and Engineering Research Council of Canada Discovery Grant to GB. We would like to thank our colleagues in industry, government, and academia that have donated the samples used for this study: Doug Kirwin (Ivanhoe Mines Ltd.), Mark Cruise (Cardero Resources Corp.), Tim Fletcher (Barrick Gold UK Limited), Danielle Giovenezzo (formely Xstrata Nickel), Bruce Durham (Canadian Royalties Inc.), Peter Lightfoot (Vale), Gilles Roy (Xstrata Zinc), Patrice Roy (Géologie Québec), Louise Corriveau, Isabelle McMartin, Dorren E. Ames, Beth McClenaghan and Jan Peter (GSC), Marc Constantin, Éric David, Marjorie Simard (Université Laval), Michel Gauthier, Michel Jébrak and Renan Furic (UQAM), Olivier Côté-Mantha (UQAC), Jeremy P. Richards (University of Alberta), Meghan Jackson, Paul Jago and Janina Micko (University of British Columbia), Larry Meinert (Smith College), Jochen Kolb (RWTH Aachen University), Luis Fontboté, Aldo Bendezu, and Kalin Kouzmanov (Université de Genève), Khin Zaw (University of Tasmania). Marc Choquette has provided outstanding technical support with the microprobe analyses. Editor Patrick Williams and two anonymous reviewers provided numerous comments that improved significantly the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georges Beaudoin.

Additional information

Editorial handling: T. Wagner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dupuis, C., Beaudoin, G. Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Miner Deposita 46, 319–335 (2011). https://doi.org/10.1007/s00126-011-0334-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-011-0334-y

Keywords

Navigation