Skip to main content

Advertisement

Log in

Assessing the contamination level, sources and risk of potentially toxic elements in urban soil and dust of Iranian cities using secondary data of published literature

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Research in urban geochemistry has been expanding globally in recent years, following the trend of the ever-increasing human population living in cities. Environmental problems caused by non-degradable pollutants such as metals and metalloids are of particular interest considering the potential to affect the health of current and future urban residents. In comparison with the extensive global research on urban geochemistry, Iranian cities have not received sufficient study. However, rapid and often uncontrolled urban expansion in Iran over recent years has contributed to an increasing number of studies concerning contamination of urban soil and dust. The present work is based on a comprehensive nationwide evaluation and intercomparison of published quantitative datasets to determine the contamination levels of Iranian cities with respect to potentially toxic elements (PTEs) and assess health risks for urban population. Calculation of geoaccumulation, pollution, and integrated pollution indices facilitated the identification of the elements of most concern in the cities, while both carcinogenic and non-carcinogenic risks have been assessed using a widely accepted health-risk model. The analysis of secondary, literature data revealed a trend of contamination, particularly in old and industrial cities with some alarming levels of health risks. Among the elements of concern, As, Cd, Cu, and Pb were found to be most enriched in soils and dusts of the studied cities based on the calculated geochemical indices. The necessity of designing strategic plans to mitigate possible adverse effects of elevated PTE concentrations in urban environments is emphasized considering the role of long-term exposure in the occurrence of chronic carcinogenic and non-carcinogenic health problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request.

References

  • Abbasi, S., Keshavarzi, B., Moore, F., Delshab, H., Soltani, N., & Sorooshian, A. (2017). Investigation of microrubbers, microplastics and heavy metals in street dust: A study in Bushehr city, Iran. Environmental Earth Sciences, 76(23), 798.

    Article  Google Scholar 

  • Abbasnejad, A., & Abbasnejad, B. (2019). Distribution, sources and pollution status of Pb in indoor and outdoor dusts of Kerman City, SE Iran. Environmental Forensics, 20(1), 106–119.

    Article  CAS  Google Scholar 

  • Abrahim, G., & Parker, R. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136(1–3), 227–238.

    CAS  Google Scholar 

  • Adimalla, N. (2020). Heavy metals pollution assessment and its associated human health risk evaluation of urban soils from Indian cities: A review. Environmental Geochemistry and Health, 42(1), 173–190.

    Article  CAS  Google Scholar 

  • Adimalla, N., & Wang, H. (2018). Distribution, contamination, and health risk assessment of heavy metals in surface soils from northern Telangana, India. Arabian Journal of Geosciences, 11(21), 684.

    Article  Google Scholar 

  • AirVisual (2018). World Air Quality Report Region & City PM2.5 Ranking. IQAir.

  • Ajmone-Marsan, F., & Biasioli, M. (2010). Trace elements in soils of urban areas. Water, Air, & Soil Pollution, 213(1–4), 121–143.

    Article  CAS  Google Scholar 

  • Alekseenko, V., & Alekseenko, A. (2014). The abundances of chemical elements in urban soils. Journal of Geochemical Exploration, 147, 245–249.

    Article  CAS  Google Scholar 

  • Ali, M. U., Liu, G., Yousaf, B., Ullah, H., Abbas, Q., & Munir, M. A. M. (2019a). A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment. Environmental Geochemistry and Health, 41, 1131–1162.

    Article  CAS  Google Scholar 

  • Ali, M. U., Liu, G., Yousaf, B., Ullah, H., Abbas, Q., & Munir, M. A. M. (2019b). A systematic review on global pollution status of particulate matter-associated potential toxic elements and health perspectives in urban environment. Environmental Geochemistry and Health, 41(3), 1131–1162.

    Article  CAS  Google Scholar 

  • Alloway, B. J. (2013). Heavy metals in soils. Springer.

  • Angelone, M., & Udovic, M. (2014). Potentially harmful elements in urban soils. In C. Bini & J. Bech (Eds.), PHEs, environment and human health (pp. 221–251). Springer.

  • Antoniadis, V., Shaheen, S. M., Levizou, E., Shahid, M., Niazi, N. K., Vithanage, M., et al. (2019). A critical prospective analysis of the potential toxicity of trace element regulation limits in soils worldwide: Are they protective concerning health risk assessment?—A review. Environment International, 127, 819–847.

    Article  CAS  Google Scholar 

  • Argyraki, A., & Kelepertzis, E. (2014). Urban soil geochemistry in Athens, Greece: The importance of local geology in controlling the distribution of potentially harmful trace elements. Science of the Total Environment, 482, 366–377.

    Article  Google Scholar 

  • Atapour, H. (2015). Geochemistry of potentially harmful elements in topsoils around Kerman city, southeastern Iran. Environmental Earth Sciences, 74(7), 5605–5624.

    Article  CAS  Google Scholar 

  • Behravesh, F., Mahmudy Gharaie, M., Ghassemzadeh, F., & Avaz Moghaddam, S. (2015). Determination of heavy metals pollution in traffic dust of Mashhad City, and its origin by using “selective sequential extraction” (SSE) procedure. Scientific Quarterly Journal Geosciences, 24(95), 141–150. (In Persian).

    Google Scholar 

  • Bini, C., & Bech, J. (2016). PHEs. Springer.

    Google Scholar 

  • Blondet, I., Schreck, E., Viers, J., Casas, S., Jubany, I., Bahí, N., et al. (2019). Atmospheric dust characterisation in the mining district of Cartagena-La Unión, Spain: air quality and health risks assessment. Science of the Total Environment, 693, 133496.

    Article  CAS  Google Scholar 

  • Bourliva, A., Christophoridis, C., Papadopoulou, L., Giouri, K., Papadopoulos, A., Mitsika, E., et al. (2017). Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki, Greece. Environmental Geochemistry and Health, 39(3), 611–634.

    Article  CAS  Google Scholar 

  • Briki, M., Zhu, Y., Gao, Y., Shao, M., Ding, H., & Ji, H. (2017). Distribution and health risk assessment to heavy metals near smelting and mining areas of Hezhang, China. Environmental Monitoring and Assessment, 189(9), 458.

    Article  Google Scholar 

  • Caeiro, S., Costa, M. H., Ramos, T., Fernandes, F., Silveira, N., Coimbra, A., et al. (2005). Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecological Indicators, 5(2), 151–169.

    Article  CAS  Google Scholar 

  • Chenery, S. R., Sarkar, S. K., Chatterjee, M., Marriott, A. L., & Watts, M. J. (2020). Heavy metals in urban road dusts from Kolkata and Bengaluru, India: Implications for human health. Environmental Geochemistry and Health, 42, 2627–2643.

    Article  CAS  Google Scholar 

  • Cheng, H., Li, M., Zhao, C., Li, K., Peng, M., Qin, A., et al. (2015). Overview of trace metals in the urban soil of 31 metropolises in China. Journal of Geochemical Exploration, 139, 31–52.

    Article  Google Scholar 

  • Christoforidis, A., & Stamatis, N. (2009). Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma, 151(3–4), 257–263.

    Article  CAS  Google Scholar 

  • Cicchella, D., Zuzolo, D., Albanese, S., Fedele, L., Di Tota, I., Guagliardi, I., et al. (2020). Urban soil contamination in Salerno (Italy): Concentrations and patterns of major, minor, trace and ultra-trace elements in soils. Journal of Geochemical Exploration, 213, 106519.

    Article  CAS  Google Scholar 

  • Dahmardeh Behrooz, R., Kaskaoutis, D., Grivas, G., & Mihalopoulos, N. (2021). Human health risk assessment for toxic elements in the extreme ambient dust conditions observed in Sistan, Iran. Chemosphere, 262, 127835.

    Article  CAS  Google Scholar 

  • Davis, S., & Mirick, D. K. (2006). Soil ingestion in children and adults in the same family. Journal of Exposure Science & Environmental Epidemiology, 16(1), 63–75.

    Article  CAS  Google Scholar 

  • de Vries, W., Groenenberg, J. E., Lofts, S., Tipping, E., & Posch, M. (2013). Critical loads of heavy metals for soils. In C. Bini & J. Bech (Eds.), Heavy metals in soils (pp. 211–237). Springer.

  • Dehbandi, R., & Aftabi, A. (2016). Geochemical provenance of soils in Kerman urban areas, Iran: Implications for the influx of aeolian dust. Aeolian Research, 21, 109–123.

    Article  Google Scholar 

  • Dehghani, S., Moore, F., Keshavarzi, B., & Beverley, A. H. (2017). Health risk implications of potentially toxic metals in street dust and surface soil of Tehran, Iran. Ecotoxicology and Environmental Safety, 136, 92–103.

    Article  CAS  Google Scholar 

  • Dissanayake, C. B., & Chandrajith, R. (2009). Introduction to medical geology. Springer Science & Business Media.

    Book  Google Scholar 

  • Dongarrà, G., Tamburo, E., & Varrica, D. (2013). Dust, metals and metalloids in the environment: From air to hair. In P. Censi, T. Darrah, & Y. Erel (Eds.), Medical geochemistry (pp. 127–148). Springer.

  • Dórea, J. G. (2019). Environmental exposure to low-level lead (Pb) co-occurring with other neurotoxicants in early life and neurodevelopment of children. Environmental Research, 177, 108641.

    Article  Google Scholar 

  • Dung, T. T. T., Cappuyns, V., Swennen, R., & Phung, N. K. (2013). From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Reviews in Environmental Science and Bio/technology, 12(4), 335–353.

    Article  CAS  Google Scholar 

  • Eghbal, N., Nasrabadi, T., Karbassi, A., & Taghavi, L. (2019). Investigating the pattern of soil metallic pollution in urban areas (case study: A district in Tehran city). International Journal of Environmental Science and Technology, 16(11), 6717–6726.

    Article  CAS  Google Scholar 

  • Fallah, A., Modabberi, S., Sayyareh, A. R., & Tabakh Shabani, A. A. (2019). Assessment of heavy metal pollution in urban soil in Karaj. Scientific Quarterly Journal, Geosciences, 29(114), 231–240.

    Google Scholar 

  • Fazeli, G., Karbassi, A., Khoramnejadian, S., & Nasrabadi, T. (2019). Evaluation of urban soil pollution: A combined approach of toxic metals and polycyclic aromatic hydrocarbons (PAHs). International Journal of Environmental Research, 13(5), 801–811.

    Article  CAS  Google Scholar 

  • Fernandes, A. R., de Souza, E. S., de Souza Braz, A. M., Birani, S. M., & Alleoni, L. R. F. (2018). Quality reference values and background concentrations of potentially toxic elements in soils from the Eastern Amazon, Brazil. Journal of Geochemical Exploration, 190, 453–463.

    Article  CAS  Google Scholar 

  • Ferreira-Baptista, L., & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 39(25), 4501–4512.

    Article  CAS  Google Scholar 

  • Forstner, U., Ahlf, W., Calmano, W., & Kersten, M. (1990). Sediment criteria development-contributions from environmental geochemistry to water quality management. In P. Rothe, U. Forstner, P. Stoffers, & D. Heling (Eds.), Sediments and environmental geochemistry: selected aspects and case histories (pp. 311–338). Berlin Heidelberg New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Fryer, M., Collins, C. D., Ferrier, H., Colvile, R. N., & Nieuwenhuijsen, M. J. (2006). Human exposure modelling for chemical risk assessment: A review of current approaches and research and policy implications. Environmental Science & Policy, 9(3), 261–274.

    Article  Google Scholar 

  • Galán, E., Romero-Baena, A. J., Aparicio, P., & González, I. (2019). A methodological approach for the evaluation of soil pollution by potentially toxic trace elements. Journal of Geochemical Exploration, 203, 96–107.

    Article  Google Scholar 

  • Ge, Y., Murray, P., & Hendershot, W. (2000). Trace metal speciation and bioavailability in urban soils. Environmental Pollution, 107(1), 137–144.

    Article  CAS  Google Scholar 

  • Ghanavati, N., & Nazarpour, A. (2016). Heavy metals pollution assessment of roadside soils in the Ahvaz City junctions. Geochemistry, 5(1), 47–54.

    Google Scholar 

  • Ghanavati, N., & Nazarpour, A. (2018). Environmental investigation of heavy metals concentration in Ahvaz city street dust, by using Geographical Information Systems (GIS). Journal of Environmental Studies, 44(3), 393–410. (In Persian).

    Google Scholar 

  • Ghanavati, N., Nazarpour, A., & De Vivo, B. (2018). Ecological and human health risk assessment of toxic metals in street dusts and surface soils in Ahvaz, Iran. Environmental Geochemistry and Health, 41(2), 875–891.

    Article  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001.

    Article  Google Scholar 

  • Hamzeh, M. A., Aftabi, A., & Mirzaee, M. (2011). Assessing geochemical influence of traffic and other vehicle-related activities on heavy metal contamination in urban soils of Kerman city, using a GIS-based approach. Environmental Geochemistry and Health, 33(6), 577.

    Article  CAS  Google Scholar 

  • Hiller, E., Filová, L., Jurkovič, Ľ., Mihaljevič, M., Lachká, L., & Rapant, S. (2020). Trace elements in two particle size fractions of urban soils collected from playgrounds in Bratislava (Slovakia). Environmental Geochemistry and Health, 42, 3925–3947.

    Article  CAS  Google Scholar 

  • Hong-gui, D., Teng-Feng, G., Ming-hui, L., & Xu, D. (2012). Comprehensive assessment model on heavy metal pollution in soil. International Journal of Electrochemical Science, 7(6), 5286–5296.

    Google Scholar 

  • Hou, S., Zheng, N., Tang, L., Ji, X., Li, Y., & Hua, X. (2019). Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. Environment International, 128, 430–437.

    Article  CAS  Google Scholar 

  • Hu, X., Zhang, Y., Luo, J., Wang, T., Lian, H., & Ding, Z. (2011). Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environmental Pollution, 159(5), 1215–1221.

    Article  CAS  Google Scholar 

  • Huang, J., Li, F., Zeng, G., Liu, W., Huang, X., Xiao, Z., et al. (2016). Integrating hierarchical bioavailability and population distribution into potential eco-risk assessment of heavy metals in road dust: A case study in Xiandao District, Changsha city, China. Science of the Total Environment, 541, 969–976.

    Article  CAS  Google Scholar 

  • Hulisz, P., Charzyński, P., & Greinert, A. (2018). Urban soil resources of medium-sized cities in Poland: A comparative case study of Toruń and Zielona Góra. Journal of Soils and Sediments, 18(2), 358–372.

    Article  CAS  Google Scholar 

  • Jafari, A. J., Kermani, M., Kalantary, R. R., & Arfaeinia, H. (2018). The effect of traffic on levels, distribution and chemical partitioning of harmful metals in the street dust and surface soil from urban areas of Tehran, Iran. Environmental Earth Sciences, 77(2), 38.

    Article  Google Scholar 

  • Jahandari, A. (2020). Pollution status and human health risk assessments of selected heavy metals in urban dust of 16 cities in Iran. Environmental Science and Pollution Research, 27, 23094–23107.

    Article  CAS  Google Scholar 

  • Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167–182.

    Article  Google Scholar 

  • Javidaneh, Z., Zarsevandi, A., & Rast Manesh, F. (2016). Determination of geo-environmental factors and source of heavy metals in street dust, Masjed-e-Soleiman City, Khouzestan Province. Iranian Journal of Health and Environment, 9(2), 155–170. (In Persian).

    Google Scholar 

  • Johnson, C. C., Demetriades, A., Locutura, J., & Ottesen, R. T. (2011). Mapping the chemical environment of urban areas. Wiley.

    Book  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants. CRC Press.

    Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Springer Science & Business Media.

    Book  Google Scholar 

  • Kamani, H., Ashrafi, S. D., Isazadeh, S., Jaafari, J., Hoseini, M., Mostafapour, F. K., et al. (2015). Heavy metal contamination in street dusts with various land uses in Zahedan, Iran. Bulletin of Environmental Contamination and Toxicology, 94(3), 382–386.

    Article  CAS  Google Scholar 

  • Karim, Z., & Qureshi, B. A. (2014). Health risk assessment of heavy metals in urban soil of Karachi, Pakistan. Human and Ecological Risk Assessment: An International Journal, 20(3), 658–667.

    Article  CAS  Google Scholar 

  • Karimi, R., Ayoubi, S., Jalalian, A., Sheikh-Hosseini, A. R., & Afyuni, M. (2011). Relationships between magnetic susceptibility and heavy metals in urban topsoils in the arid region of Isfahan, central Iran. Journal of Applied Geophysics, 74(1), 1–7.

    Article  Google Scholar 

  • Karimi, A., Haghnia, G. H., Safari, T., & Hadadian, H. (2017). Lithogenic and anthropogenic pollution assessment of Ni, Zn and Pb in surface soils of Mashhad plain, northeastern Iran. Catena, 157, 151–162.

    Article  CAS  Google Scholar 

  • Karimian Torghabeh, A., Pradhan, B., & Jahandari, A. (2020). Assessment of geochemical and sedimentological characteristics of atmospheric dust in Shiraz, southwest Iran. Geoscience Frontiers, 11(3), 783–792.

    Article  Google Scholar 

  • Keshavarzi, B., Tazarvi, Z., Rajabzadeh, M. A., & Najmeddin, A. (2015). Chemical speciation, human health risk assessment and pollution level of selected heavy metals in urban street dust of Shiraz, Iran. Atmospheric Environment, 119, 1–10.

    Article  CAS  Google Scholar 

  • Khosravi, E., Houdaji, M., & Etemadifar, M. (2014). The relationship of concentrations of lead and zinc and multiple sclerosis in Isfahan Province, Iran. Journal of Isfahan Medical School, 32(275), 160–169. (In Persian).

    Google Scholar 

  • Kicińska, A., & Bożęcki, P. (2018). Metals and mineral phases of dusts collected in different urban parks of Krakow and their impact on the health of city residents. Environmental Geochemistry and Health, 40(1), 473–488.

    Article  Google Scholar 

  • Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environmental Geochemistry and Health, 40(6), 2395–2420.

    Article  CAS  Google Scholar 

  • Kumar, V., Sharma, A., Kaur, P., Sidhu, G. P. S., Bali, A. S., Bhardwaj, R., et al. (2019). Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere, 216, 449–462.

    Article  CAS  Google Scholar 

  • Lanzerstorfer, C. (2018). Heavy metals in the finest size fractions of road-deposited sediments. Environmental Pollution, 239, 522–531.

    Article  CAS  Google Scholar 

  • LeGalley, E., Widom, E., Krekeler, M. P., & Kuentz, D. C. (2013). Chemical and lead isotope constraints on sources of metal pollution in street sediment and lichens in southwest Ohio. Applied Geochemistry, 32, 195–203.

    Article  CAS  Google Scholar 

  • Li, G., Sun, G. X., Ren, Y., Luo, X. S., & Zhu, Y. G. (2018). Urban soil and human health: A review. European Journal of Soil Science, 69(1), 196–215.

    Article  Google Scholar 

  • Li, H.-H., Chen, L.-J., Yu, L., Guo, Z.-B., Shan, C.-Q., Lin, J.-Q., et al. (2017). Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Science of the Total Environment, 586, 1076–1084.

    Article  CAS  Google Scholar 

  • Li, S., & Jia, Z. (2018). Heavy metals in soils from a representative rapidly developing megacity (SW China): Levels, source identification and apportionment. CATENA, 163, 414–423.

    Article  CAS  Google Scholar 

  • Liu, E., Yan, T., Birch, G., & Zhu, Y. (2014). Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China. Science of the Total Environment, 476, 522–531.

    Article  Google Scholar 

  • Loska, K., Wiechuła, D., & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environment International, 30(2), 159–165.

    Article  CAS  Google Scholar 

  • Ludden, J., Peach, D., & Flight, D. (2015). Geochemically based solutions for urban society: London, a case study. Elements, 11(4), 253–258.

    Article  Google Scholar 

  • Luo, X.-S., Ding, J., Xu, B., Wang, Y.-J., Li, H.-B., & Yu, S. (2012). Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Science of the Total Environment, 424, 88–96.

    Article  CAS  Google Scholar 

  • Lv, J., & Liu, Y. (2019). An integrated approach to identify quantitative sources and hazardous areas of heavy metals in soils. Science of the Total Environment, 646, 19–28.

    Article  CAS  Google Scholar 

  • Ma, L., Yang, Z., Li, L., & Wang, L. (2016). Source identification and risk assessment of heavy metal contaminations in urban soils of Changsha, a mine-impacted city in Southern China. Environmental Science and Pollution Research, 23(17), 17058–17066.

    Article  CAS  Google Scholar 

  • Mama, C., Nnaji, C., Emenike, P., & Chibueze, C. (2020). Potential environmental and human health risk of soil and roadside dust in a rapidly growing urban settlement. International Journal of Environmental Science and Technology, 17(4), 2385–2400.

    Article  CAS  Google Scholar 

  • Martin, S., & Griswold, W. (2009). Human health effects of heavy metals (p. 15). Center for Hazardous Substance Research, Kansas State University.

    Google Scholar 

  • Mazhari, S. A., Bajestani, A. R. M., Hatefi, F., Aliabadi, K., & Haghighi, F. (2018). Soil geochemistry as a tool for the origin investigation and environmental evaluation of urban parks in Mashhad city, NE of Iran. Environmental Earth Sciences, 77(13), 492.

    Article  Google Scholar 

  • Mazurek, R., Kowalska, J., Gąsiorek, M., Zadrożny, P., Józefowska, A., Zaleski, T., et al. (2017). Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere, 168, 839–850.

    Article  CAS  Google Scholar 

  • Merian, E., Anke, M., Ihnat, M., & Stoeppler, M. (2004). Elements and their compounds in the environment: Occurrence, analysis and biological relevance. Wiley-VCH.

  • Mihankhah, T., Saeedi, M., & Karbassi, A. (2020). A comparative study of elemental pollution and health risk assessment in urban dust of different land-uses in Tehran’s urban area. Chemosphere, 241, 124984.

    Article  CAS  Google Scholar 

  • Mirzaei Aminiyan, M., Baalousha, M., & Aminiyan, F. M. (2018). Evolution of human health risk based on EPA modeling for adults and children and pollution level of potentially toxic metals in Rafsanjan road dust: A case study in a semi-arid region, Iran. Environmental Science and Pollution Research, 25(20), 19767–19778.

    Article  Google Scholar 

  • Mirzaei, R., Teymourzade, S., Sakizadeh, M., & Ghorbani, H. (2015). Comparative study of heavy metals concentration in topsoil of urban green space and agricultural land uses. Environmental Monitoring and Assessment, 187(12), 741.

    Article  Google Scholar 

  • Modabberi, S., Tashakor, M., Soltani, N. S., & Hursthouse, A. S. (2018). Potentially toxic elements in urban soils: Source apportionment and contamination assessment. Environmental Monitoring and Assessment, 190(12), 715.

    Article  Google Scholar 

  • Moghtaderi, T., Alamdar, R., Rodríguez-Seijo, A., Naghibi, S. J., & Kumar, V. (2020). Ecological risk assessment and source apportionment of heavy metal contamination in urban soils in Shiraz, Southwest Iran. Arabian Journal of Geosciences, 13(16), 1–12.

    Article  Google Scholar 

  • Moghtaderi, T., Aminiyan, M. M., Alamdar, R., & Moghtaderi, M. (2019). Index-based evaluation of pollution characteristics and health risk of potentially toxic metals in schools dust of Shiraz megacity, SW Iran. Human and Ecological Risk Assessment: An International Journal, 25(1–2), 410–437.

    Article  CAS  Google Scholar 

  • Moradi, Q., & Mirzaei, R. (2017). Spatial variability analysis of heavy metals in street dusts of Kashan city. Iranian Journal of Health and Environment, 9(4), 443–456. (In Persian).

    Google Scholar 

  • Morera-Gómez, Y., Alonso-Hernández, C. M., Santamaría, J. M., Elustondo, D., Lasheras, E., & Widory, D. (2019). Levels, spatial distribution, risk assessment, and sources of environmental contamination vectored by road dust in Cienfuegos (Cuba) revealed by chemical and C and N stable isotope compositions. Environmental Science and Pollution Research, 27(2), 2184–2196.

    Article  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geology Journal, 2, 108–118.

    Google Scholar 

  • Murray, K. S., Rogers, D. T., & Kaufman, M. M. (2004). Heavy metals in an urban watershed in southeastern Michigan. Journal of Environmental Quality, 33(1), 163–172.

    Article  CAS  Google Scholar 

  • Najmeddin, A., Keshavarzi, B., Moore, F., & Lahijanzadeh, A. (2017). Source apportionment and health risk assessment of potentially toxic elements in road dust from urban industrial areas of Ahvaz megacity, Iran. Environmental Geochemistry and Health, 40(4), 1187–1208.

    Article  Google Scholar 

  • Najmeddin, A., Moore, F., Keshavarzi, B., & Sadegh, Z. (2018). Pollution, source apportionment and health risk of potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) in urban street dust of Mashhad, the second largest city of Iran. Journal of Geochemical Exploration, 190, 154–169.

    Article  CAS  Google Scholar 

  • Nazarpour, A., Watts, M. J., Madhani, A., & Elahi, S. (2019). Source, spatial distribution and pollution assessment of Pb, Zn, Cu, and Pb, isotopes in urban soils of Ahvaz City, a semi-arid metropolis in southwest Iran. Scientific Reports, 9(1), 1–11.

    Article  CAS  Google Scholar 

  • Ngole-Jeme, V. M., & Fantke, P. (2017). Ecological and human health risks associated with abandoned gold mine tailings contaminated soil. PLoS ONE, 12(2), e0172517.

    Article  Google Scholar 

  • Ogunkunle, C. O., & Fatoba, P. O. (2013). Pollution loads and the ecological risk assessment of soil heavy metals around a mega cement factory in Southwest Nigeria. Polish Journal of Environmental Studies, 22(2), 487–493.

    CAS  Google Scholar 

  • Okorie, A., Entwistle, J., & Dean, J. R. (2012). Estimation of daily intake of potentially toxic elements from urban street dust and the role of oral bioaccessibility testing. Chemosphere, 86(5), 460–467.

    Article  CAS  Google Scholar 

  • Ordóñez, A., Loredo, J., De Miguel, E., & Charlesworth, S. (2003). Distribution of heavy metals in the street dusts and soils of an industrial city in Northern Spain. Archives of Environmental Contamination and Toxicology, 44(2), 0160–0170.

    Article  Google Scholar 

  • Othman, M., & Latif, M. T. (2020). Pollution characteristics, sources, and health risk assessments of urban road dust in Kuala Lumpur City. Environmental Science and Pollution Research, 27, 11227–11245.

  • Pan, L., Wang, Y., Ma, J., Hu, Y., Su, B., Fang, G., et al. (2017). A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environmental Science and Pollution Research, 25(2), 1055–1069.

    Article  Google Scholar 

  • Puskás, I., & Farsang, A. (2009). Diagnostic indicators for characterizing urban soils of Szeged, Hungary. Geoderma, 148(3–4), 267–281.

    Article  Google Scholar 

  • Qu, C., Sun, K., Wang, S., Huang, L., & Bi, J. (2012). Monte carlo simulation-based health risk assessment of heavy metal soil pollution: A case study in the Qixia mining area, China. Human and Ecological Risk Assessment: An International Journal, 18(4), 733–750.

    Article  CAS  Google Scholar 

  • Raj, D., & Maiti, S. K. (2020). Sources, bioaccumulation, health risks and remediation of potentially toxic metal (loid) s (As, Cd, Cr, Pb and Hg): An epitomised review. Environmental Monitoring and Assessment, 192(2), 108.

    Article  CAS  Google Scholar 

  • Rapant, S., Fajčíková, K., Khun, M., & Cvečková, V. (2011). Application of health risk assessment method for geological environment at national and regional scales. Environmental Earth Sciences, 64(2), 513–521.

    Article  CAS  Google Scholar 

  • Rasmussen, P., Subramanian, K., & Jessiman, B. (2001). A multi-element profile of house dust in relation to exterior dust and soils in the city of Ottawa, Canada. Science of the Total Environment, 267(1–3), 125–140.

    Article  CAS  Google Scholar 

  • Rastegarimehr, M., Keshavarzi, B., Moore, F., Sharifi, R., Lahijanzadeh, A., & Kermani, M. (2017). Distribution, source identification and health risk assessment of soil heavy metals in urban areas of Isfahan province, Iran. Journal of African Earth Sciences, 132, 16–26.

    Article  CAS  Google Scholar 

  • Rate, A. W. (2018). Multielement geochemistry identifies the spatial pattern of soil and sediment contamination in an urban parkland, Western Australia. Science of the Total Environment, 627, 1106–1120.

    Article  CAS  Google Scholar 

  • Reimann, C., & Garrett, R. G. (2005). Geochemical background—concept and reality. Science of the Total Environment, 350(1–3), 12–27.

    Article  CAS  Google Scholar 

  • Robson, M. (2003). Methodologies for assessing exposures to metals: Human host factors. Ecotoxicology and Environmental Safety, 56(1), 104–109.

    Article  CAS  Google Scholar 

  • Rodrigues, S., Urquhart, G., Hossack, I., Pereira, M. E., Duarte, A. C., Davidson, C., et al. (2009). The influence of anthropogenic and natural geochemical factors on urban soil quality variability: A comparison between Glasgow, UK and Aveiro, Portugal. Environmental Chemistry Letters, 7(2), 141–148.

    Article  CAS  Google Scholar 

  • Rodríguez-Seijo, A., Andrade, M. L., & Vega, F. A. (2017). Origin and spatial distribution of metals in urban soils. Journal of Soils and Sediments, 17(5), 1514–1526.

    Article  Google Scholar 

  • Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science & Technology, 30(2), 422–430.

    Article  CAS  Google Scholar 

  • Rydin, Y., Bleahu, A., Davies, M., Dávila, J. D., Friel, S., De Grandis, G., et al. (2012). Shaping cities for health: Complexity and the planning of urban environments in the 21st century. The Lancet, 379(9831), 2079–2108.

    Article  Google Scholar 

  • Said, I., Salman, S.A.E.-R., Samy, Y., Awad, S. A., Melegy, A., & Hursthouse, A. S. (2019). Environmental factors controlling potentially toxic element behaviour in urban soils, El Tebbin, Egypt. Environmental Monitoring and Assessment, 191(5), 267.

    Article  CAS  Google Scholar 

  • Salmanzadeh, M., Saeedi, M., Li, L., & Nabi-Bidhendi, G. (2015). Characterization andmetals fractionation of street dust samples from Tehran, Iran. International Journal of Environmental Research, 9(1), 213–224.

    CAS  Google Scholar 

  • Samanai Majd, S., Taebi, A., & Afyuni, M. (2007). lead and cadmium pollution in urban roadside soil. Journal of Environmental Studies, 33(43), 10. (In Persian).

    Google Scholar 

  • Shafiei, A., & Mirghaffari, N. (2012). Distribution of cadmium in Isfahan urban area. Environment and Development, 3(5), 25–30. (In Persian).

    Google Scholar 

  • Shaheen, S. M., Kwon, E. E., Biswas, J. K., Tack, F. M., Ok, Y. S., & Rinklebe, J. (2017a). Arsenic, chromium, molybdenum, and selenium: Geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt. Chemosphere, 180, 553–563.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Shams, M. S., Khalifa, M. R., Mohamed, A., & Rinklebe, J. (2017b). Various soil amendments and environmental wastes affect the (im) mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil. Ecotoxicology and Environmental Safety, 142, 375–387.

    Article  CAS  Google Scholar 

  • Shakeri, A. (2010). Environmental impacts of Shiraz great industrial town on water, soil and sediments of Qarabagh plain. Shiraz University.

    Google Scholar 

  • Shi, D., & Lu, X. (2018). Accumulation degree and source apportionment of trace metals in smaller than 63 μm road dust from the areas with different land uses: A case study of Xi’an, China. Science of the Total Environment, 636, 1211–1218.

    Article  CAS  Google Scholar 

  • Solgi, E., & Oshvandi, Z. (2018). Spatial patterns, hotspot, and risk assessment of heavy metals in different land uses of urban soils (case study: Malayer city). Human and Ecological Risk Assessment: An International Journal, 24(1), 256–270.

    Article  CAS  Google Scholar 

  • Solgi, E., Roohi, N., & Kouroshi-Gholampour, M. (2016). A comparative study of metals in roadside soils and urban parks from Hamedan metropolis, Iran. Environmental Nanotechnology, Monitoring & Management, 6, 169–175.

    Article  Google Scholar 

  • Solgi, E., & Yarahmadi, F. (2015). Ecological risk assessment of cadmium and lead in urban and forest park soils in Asadabad City, Iran. Scientific Journal of School of Public Health and Institute of Public Health Research, 13(2), 79–94. (In Persian).

    Google Scholar 

  • Soltani, N., Keshavarzi, B., Moore, F., Tavakol, T., Lahijanzadeh, A. R., Jaafarzadeh, N., et al. (2015). Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Science of the Total Environment, 505, 712–723.

    Article  CAS  Google Scholar 

  • Sun, Y., Zhou, Q., Xie, X., & Liu, R. (2010). Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. Journal of Hazardous Materials, 174(1–3), 455–462.

    Article  CAS  Google Scholar 

  • Tack, F., & Verloo, M. G. (1995). Chemical speciation and fractionation in soil and sediment heavy metal analysis: A review. International Journal of Environmental Analytical Chemistry, 59(2–4), 225–238.

    Article  CAS  Google Scholar 

  • Taebi, A., Samani Majd, S., & Abtahi, S. M. (2007). The relationship between traffic parameters and lead and cadmium concentrations in urban roadside soil. Journal of Transportation Research, 4(3), 195–204.

    Google Scholar 

  • Tahmasbian, I., Nasrazadani, A., Shoja, H., & Sinegani, A. A. S. (2014). The effects of human activities and different land-use on trace element pollution in urban topsoil of Isfahan (Iran). Environmental Earth Sciences, 71(4), 1551–1560.

    Article  CAS  Google Scholar 

  • Tang, R., Ma, K., Zhang, Y., & Mao, Q. (2012). Health risk assessment of heavy metals of street dust in Beijing. Acta Scientiae Circumstantiate, 32(8), 2006–2015.

    CAS  Google Scholar 

  • Tanner, P. A., Ma, H.-L., & Yu, P. K. (2008). Fingerprinting metals in urban street dust of Beijing, Shanghai, and Hong Kong. Environmental Science & Technology, 42(19), 7111–7117.

    Article  CAS  Google Scholar 

  • Tashakor, M., Hochwimmer, B., & Brearley, F. Q. (2017). Geochemical assessment of metal transfer from rock and soil to water in serpentine areas of Sabah (Malaysia). Environmental Earth Sciences, 76(7), 281.

    Article  Google Scholar 

  • Tashakor, M., Hochwimmer, B., & Imanifard, S. (2015). Control of grain-size distribution of serpentinite soils on mineralogy and heavy metal concentration. Asian Journal of Earth Sciences, 8(2), 45.

    Article  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Blackwell Scientific Publications. 

  • Tepanosyan, G., Sahakyan, L., Maghakyan, N., & Saghatelyan, A. (2021). Identification of spatial patterns, geochemical associations and assessment of origin-specific health risk of potentially toxic elements in soils of Armavir region, Armenia. Chemosphere, 262, 128365.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Timofeev, I., Shartova, N., Kosheleva, N., & Kasimov, N. (2019). Potentially toxic elements in urban topsoils and health risk assessment for the mining W-Mo center in the Baikal region. Environmental Geochemistry and Health, 42(1), 221–240.

    Article  Google Scholar 

  • United Nations. (2018). Revision of world urbanization prospects. New York: United Nations.

    Google Scholar 

  • Urrutia-Goyes, R., Hernandez, N., Carrillo-Gamboa, O., Nigam, K., & Ornelas-Soto, N. (2018). Street dust from a heavily-populated and industrialized city: Evaluation of spatial distribution, origins, pollution, ecological risks and human health repercussions. Ecotoxicology and Environmental Safety, 159, 198–204.

    Article  CAS  Google Scholar 

  • USEPA. (2002). Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Emergency and Remedial Response, The United States Environmental Protection Agency.

  • USEPA. (2016). Regional screening levels (RSLs) - generic tables (May 2016). The United States Environmental Protection Agency.

  • Vaziri, A., Nazarpour, A., Ghanavati, N., Babainejad, T., & Watts, M. J. (2021). An integrated approach for spatial distribution of potentially toxic elements (Cu, Pb and Zn) in topsoil. Scientific Reports, 11(1), 1–16.

    Article  Google Scholar 

  • Vijver, M. G., Van Gestel, C. A., Lanno, R. P., Van Straalen, N. M., & Peijnenburg, W. J. (2004). Internal metal sequestration and its ecotoxicological relevance: A review. Environmental Science & Technology, 38(18), 4705–4712.

    Article  CAS  Google Scholar 

  • Vrščaj, B., Zupan, M., & Lobnik, F. (2002). Data on soil pollution for urban planning. Trans 9th Inter. Congr Soil Sci, Bangkok, Thailand, 14–21 August 2002.

  • Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94(2), 99–107.

    Article  CAS  Google Scholar 

  • Weissmannová, H. D., & Pavlovský, J. (2017). Indices of soil contamination by heavy metals-methodology of calculation for pollution assessment (minireview). Environmental Monitoring and Assessment, 189(12), 616.

    Article  Google Scholar 

  • Xia, Q., Zhang, J., Chen, Y., Ma, Q., Peng, J., Rong, G., et al. (2020). Pollution, sources and human health risk assessment of potentially toxic elements in different land use types under the background of industrial cities. Sustainability, 12(5), 2121.

    Article  CAS  Google Scholar 

  • Yang, K., & Cattle, S. R. (2018). Contemporary sources and levels of heavy metal contamination in urban soil of Broken Hill, Australia after ad hoc land remediation. International Journal of Mining, Reclamation and Environment, 32(1), 18–34.

    Article  CAS  Google Scholar 

  • Yang, Z.-B., Yang, Y.-X., Shao, J.-R., Zhu, X.-M., Cheng, Z., Li, H.-H., et al. (2017). Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Science of the Total Environment, 586, 1076–1084.

    Article  Google Scholar 

  • Young, S., Zhang, H., Tye, A., Maxted, A., Thums, C., & Thornton, I. (2005). Characterizing the availability of metals in contaminated soils. I. The solid phase: Sequential extraction and isotopic dilution. Soil Use and Management, 21, 450–458.

    Article  Google Scholar 

  • Zhang, G., Shao, L., Li, F., Yang, F., Wang, J., & Jin, Z. (2020). Bioaccessibility and health risk assessment of Pb and Cd in urban dust in Hangzhou, China. Environmental Science and Pollution Research, 27, 11760–11771.

  • Zhao, L., Hu, G., Yan, Y., Yu, R., Cui, J., Wang, X., et al. (2019). Source apportionment of heavy metals in urban road dust in a continental city of eastern China: Using Pb and Sr isotopes combined with multivariate statistical analysis. Atmospheric Environment, 201, 201–211.

    Article  CAS  Google Scholar 

  • Zhaoyong, Z., Mamat, A., & Simayi, Z. (2019). Pollution assessment and health risks evaluation of (metalloid) heavy metals in urban street dust of 58 cities in China. Environmental Science and Pollution Research, 26(1), 126–140.

    Article  Google Scholar 

  • Zhiyuan, W., Dengfeng, W., Huiping, Z., & Zhiping, Q. (2011). Assessment of soil heavy metal pollution with principal component analysis and geoaccumulation index. Procedia Environmental Sciences, 10, 1946–1952.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their time and efforts to read this manuscript and improve its quality by their insightful comments and suggestions.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Methodology and formal analysis were conducted by MT. The first draft of the manuscript was written by MT and SM validated the performances, reviewed, and commented on previous versions of the manuscript. AA performed literature search, read, discussed the results, and commented on the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mahsa Tashakor.

Ethics declarations

Conflicts of interest

The authors have no financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1948 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tashakor, M., Modabberi, S. & Argyraki, A. Assessing the contamination level, sources and risk of potentially toxic elements in urban soil and dust of Iranian cities using secondary data of published literature. Environ Geochem Health 44, 645–675 (2022). https://doi.org/10.1007/s10653-021-00994-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-00994-z

Keywords

Navigation