Skip to main content

Advertisement

Log in

Soil biological attributes in arsenic-contaminated gold mining sites after revegetation

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Recovery of arsenic contaminated areas is a challenge society faces throughout the world. Revegetation associated with microbial activity can play an essential role in this process. This work investigated biological attributes in a gold mining area with different arsenic contents at different sites under two types of extant revegetation associated with cover layers of the soil: BS, Brachiaria sp. and Stizolobium sp., and LEGS, Acacia crassicarpa, A. holosericea, A. mangium, Sesbania virgata, Albizia lebbeck and Pseudosamanea guachapele. References were also evaluated, comprising the following three sites: B1, weathered sulfide substrate without revegetation; BM, barren material after gold extraction and PRNH (private reserve of natural heritage), an uncontaminated forest site near the mining area. The organic and microbial biomass carbon contents and substrate-induced respiration rates for these sites from highest to lowest were: PRNH > LEGS > BS > B1 and BM. These attributes were negatively correlated with soluble and total arsenic concentration in the soil. The sites that have undergone revegetation (LEGS and BS) had higher densities of bacteria, fungi, phosphate solubilizers and ammonium oxidizers than the sites without vegetation. Principal component analysis showed that the LEGS site grouped with PRNH, indicating that the use of leguminous species associated with an uncontaminated soil cover layer contributed to the improvement of the biological attributes. With the exception of acid phosphatase, all the biological attributes were indicators of soil recovery, particularly the following: microbial carbon, substrate-induced respiration, density of culturable bacteria, fungi and actinobacteria, phosphate solubilizers and metabolic quotient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alef K (1995) Estimation of soil respiration. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press, New York, pp 464–470

    Google Scholar 

  • Allison VJ, Condron LM, Peltzer DA, Richardson SJ, Turner BL (2007) Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil Biol Biochem 39:1770–1781

    Article  CAS  Google Scholar 

  • Anderson JPE, Domsch KH (1975) Measurement of bacterial and fungal contributions to respiration of selected agricultural and forest soils. Can J Microbiol 21:314–322

    Article  CAS  Google Scholar 

  • Anderson TH, Domsch KH (1993) The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such pH, on the microbial biomass of forest soil. Soil Biol Biochem 25:393–395

    Article  Google Scholar 

  • Ascher J, Ceccherini MT, Landi L, Mench M, Pietramellara G, Nannipieri P, Renella G (2009) Composition, biomass and activity of microflora, and leaf yields and foliar elemental concentrations of lettuce, after in situ stabilization of an arsenic-contaminated soil. Appl Soil Ecol 41:351–359

    Article  Google Scholar 

  • Assis IR, Dias LE, Abrahão WAP, Ribeiro ES Jr, Mello JWV (2011) Cover layers to the growth of trees and shrubs over a sulfide spoil from gold mining. Rev Arvore 35:941–947

    Article  Google Scholar 

  • Bååth E, Díaz-Raviña M, Frostegård A, Campbell CD (1998) Effect of metal-rich sludge amendments on the soil microbial community. Appl Environ Microbiol 64:238–245

    Google Scholar 

  • Bhattacharyya P, Tripathy S, Kim K, Kim SH (2008) Arsenic fractions and enzyme activities in arsenic-contaminated soils by groundwater irrigation in West Bengal. Ecotox Environ Safe 71:149–156

    Article  CAS  Google Scholar 

  • Borba RP, Figueiredo BR, Matschullat J (2003) Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from iron quadrangle, Brazil. Environ Geol 44:39–52

    CAS  Google Scholar 

  • Bouyoucos GJ (1951) A recalibration of the hydrometer method for making analysis of soils. Agr J 43:433–437

    Google Scholar 

  • Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fert Soils 19:269–279

    Article  CAS  Google Scholar 

  • Cardoso EL, Silva MLN, Moreira FMS, Curi N (2009) Atributos biológicos indicadores da qualidade do solo em pastagem cultivada e nativa no Pantanal. Pesqui Agropecu Bras 44:631–637

    Article  Google Scholar 

  • Choe E, Kim KW, Bang S, Yoon IH, Lee KY (2009) Qualitative analysis and mapping of heavy metals in an abandoned Au–Ag mine area using NIR spectroscopy. Environ Geol 58:477–482

    Article  CAS  Google Scholar 

  • Chopra BK, Bhat S, Mikheenko IP, Xu Z, Yang Y, Luo X, Chen H, Van Zwieten L, Lilley R, McC R, Zhang R (2007) The characteristics of rhizosphere microbes associated with plants in arsenic-contaminated soils from cattle dip sites. Sci Total Environ 378:331–342

    Article  CAS  Google Scholar 

  • Conselho nacional do meio ambiente (CONAMA) (2009) Resolução No 420. http://www.mma.gov.br/port/conama/legiabre.cfm?codlegi=620. Accessed 03 May 2013

  • Cycoń M, Piotrowska-Seget Z (2009) Changes in bacterial diversity and community structure following pesticides addition to soil estimated by cultivation technique. Ecotoxicol 18:632–642

    Article  Google Scholar 

  • Dias Júnior HE, Moreira FMS, Siqueira JO, Silva R (1998) Metais pesados, densidade e atividade microbiana em solo contaminado por rejeitos de indústria de zinco. Rev Bras Cienc Solo 22:631–640

    Google Scholar 

  • Dias LE, Campello, EFC, Ribeiro Jr ES (2000) Uso de leiras na revegetação de um substrato remanescente da exploração de ouro em Paracatu-MG. In: IV Simpósio Nacional de Recuperação de Áreas Degradadas. Silvicultura Ambiental. Blumenau – SC, Cd-Rom

  • Dick RP, Breakwell DP, Turco RF (1996) Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. Soil Sci Soc Am, Madison, pp 247–272

    Google Scholar 

  • Dong Y, Zhu YG, Smith FA, Wang Y, Chen B (2008) Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environ Pollut 155:174–181

    Article  CAS  Google Scholar 

  • Edvantoro BB, Naidu R, Megharaj M, Singleton I (2003) Changes in microbial properties associated with long-term arsenic and DDT contaminated soils at disused cattle dipsites. Ecotoxicol Environ Safe 55:344–351

    Article  CAS  Google Scholar 

  • Feigl BJ, Sparling GP, Ross DJ, Cerri CC (1995) Soil microbial biomass in Amazonian soils: evaluation of methods and estimates of pool sizes. Soil Biol Biochem 27:1467–1472

    Article  CAS  Google Scholar 

  • Ferreira DF (2011) Sisvar a computer statistical analysis system. Cienc Agrotec 35:1039–1042

    Google Scholar 

  • Geets J, Vangronsveld J, Diels L, Taghavi S, van der Lelie D (2008) Chapter 21 Microbial activities, monitoring and applications as part of a management strategy for heavy metal-contaminated soil and ground water. Dev Soil Sci 32:521–559

    Article  CAS  Google Scholar 

  • Ghosh AK, Bhattacharyya P, Pal R (2004) Effect of arsenic contamination on microbial biomass and its activities in arsenic contaminated soils of Gangetic West Bengal, India. Environ Int 30:491–499

    Article  CAS  Google Scholar 

  • Gratão PL, Prasad MNV, Cardoso PF, Lea PJ, Azevedo RA (2005) Phytoremediation: green technology for the clean up or toxic metals in the environment. Braz J Plant Physiol 17:53–64

    Article  Google Scholar 

  • He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Bio 19:125–140

    Article  CAS  Google Scholar 

  • Huang JW, Poynton CY, Kochian LV, Elless MP (2004) Phytofiltration of arsenic from drinking water using arsenic-hyperaccumulating ferns. Environ Sci Technol 38:3412–3417

    Article  CAS  Google Scholar 

  • Jenkinson DS, Ladd JN (1981) Microbial biomass in soil: measuremente and turnover. In: Paul E, Ladd JN (eds) Soil biochemistry. Marcel Dekker, New York, pp 425–471

    Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Juma NG, Tabatabai MA (1977) Effects of trace elements on phosphatase activity in soils. Soil Sci Soc Am J 41:343–346

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2010) Trace elements in soil and plants, 4th edn. CRC, Boca Raton

    Google Scholar 

  • Kaiser EA, Martens R, Heinemeyer O (1995) Temporal changes in soil microbial biomass carbon in an arable soil. Plant Soil 170:287–295

    Article  CAS  Google Scholar 

  • Lee JS, Lee SW, Chon HT, Kim K (2008) Evaluation of human exposure to arsenic due to rice ingestion in the vicinity of abandoned Myungbong Au–Ag mine site. Korea J Geochem Explor 96:231–235

    Article  CAS  Google Scholar 

  • Li YT, Rouland C, Benedetti M, Li FB, Pando A, Lavelle P, Dai J (2009) Microbial biomass, enzyme and mineralization activity in relation to soil organic C, N and P turnover influenced by acid metal stress. Soil Biol Biochem 41:969–977

    Article  CAS  Google Scholar 

  • Martin JP (1950) Use of acids rose-bengall and streptomicin in the plate method for estimating soil fungi. Soil Sci 134:215–232

    Article  Google Scholar 

  • Mastretta C, Barac T, Vangronsveld J, Newman L, Taghavi S, van der Lelie D (2006) Endophytic bacteria and their potential application to improve the phytoremediation of contaminated environments. In: Harding SE, Tombs MP (eds) Biotechnology and genetic engineering reviews, vol 23. Lavoisier, Paris, pp 175–207

    Google Scholar 

  • Mehlich, A. (1953) Determination of P, Ca, Mg, K, Na and NH4. North Carolina Soil Testing Laboratories, Raleigh, NC

  • Moreira FMS, Siqueira JO, Brussaard L (2006) Soil biodiversity in Amazonian and other Brazilian ecossystems. CABI, Wallingford

    Book  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bunemann EK, Oberson A, Frossard E (eds) Phosphorus in Action. Soil Biology vol. 26. Springer Verlag, Berlin, pp 215–241

    Chapter  Google Scholar 

  • Nautiyal CS (1999) An effect microbiological grouwth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 70:265–270

    Article  Google Scholar 

  • Oliveira A, Pampulha ME (2006) Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng 102:157–161

    Article  CAS  Google Scholar 

  • Paivoke AEA, Simola LK (2001) Arsenate toxicity to Pisum sativum: mineral nutrients, chorophyll content, and phytase activity. Ecotox Environ Safe 49:111–121

    Article  CAS  Google Scholar 

  • Powlson DS, Hirsch PR, Brookes PC (2001) The role of soil microorganisms in soil organic matter conservation in the Tropics. Nutr Cycl Agroecosy 61:41–51

    Article  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Renella G, Landi L, Ascher J, Ceccherini MT, Pietramellara G, Mench M, Nannipieri P (2008) Long-term effects of aided phytostabilisation of trace elements on microbial biomass and activity, enzyme activities, and composition of microbial community in the Jales contaminated mine spoils. Environ Pollut 152:702–712

    Article  CAS  Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92

    Article  CAS  Google Scholar 

  • Sarathchandra U (1978) Nitrification activities and the changes in the populations of nitrifying bacteria in soil perfused at two different H-ion concentrations. Plant Soil 50:99–111

    Article  CAS  Google Scholar 

  • Sarkar A, Kazy SK, Sar P (2013) Characterization of arsenic resistant bacteria from arsenic rich groundwater of West Bengal, India. Ecotoxicology 22:363–376

    Article  CAS  Google Scholar 

  • Schinner F, Ohlinger R, Kandeler E, Margesin R (1996) Methods in soil biology. Springer, Heidelberg

    Book  Google Scholar 

  • Silva RR, Silva MLN, Cardoso EL, Moreira FMS, Curi N, Alovisi AMT (2010) Biomassa e atividade microbiana em solo sob diferentes sistemas de manejo na região fisiográfica campos das vertentes – MG. Rev Bras Cienc Solo 34:1585–1592

    Google Scholar 

  • Smith JL, Paul EA (1990) The significance of soil microbial biomass estimations. In: Bollag JM, Stotzky G (eds) Soil biochemistry. Marcel Dekker Inc., New York, pp 357–396

    Google Scholar 

  • Sparling GP (1992) Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Aust J Soil Res 30:195–207

    Article  CAS  Google Scholar 

  • Speir TW, Ross DJ (2002) Hydrolytic enzyme activities to assess soil degradation and recovery. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology and applications. Marcel Dekker Inc., New York, pp 407–431

    Google Scholar 

  • Speir TW, Kettles HA, Parshotam A, Searle PL, Vlaar LNC (1999) Simple kinetic approach to determine the toxicity of As(V) to soil biological properties. Soil Biol Biochem 31:705–713

    Article  CAS  Google Scholar 

  • Sylvester-Bradley R, Asakawa N, Torraca SLA, Magalhães FMM, Oliveira LA, Pereira RM (1982) Levantamento quantitativo de microrganismos solubilizadores de fosfatos na rizosfera de gramíneas e leguminosas forrageiras na Amazônia. Acta Amaz 12:15–22

    Google Scholar 

  • Tabatabai MA (1994) Enzymes. In: Weaver RW, Angle JS, Bottomley PS (eds) Methods of soil analysis Part 2. Microbiological and Biochemical Properties. Soil Sci Soc Am, Madison, pp 775–833

    Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. doi:10.1155/2011/939161

    Google Scholar 

  • Ter braak CJF, Smilauer P (2002) CANOCO Reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

    Google Scholar 

  • USEPA (2007). Method 3051 A: microwave assisted acid digestion of sediments sludges, soils and oils: revision 1. Technical report. US Environmental Protection Agency, Washington, DC

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  CAS  Google Scholar 

  • Vásquez-Murrieta MS, Garduño-Migueles I, Franco-Hernández O, Govaerts B, Dendooven L (2006) C and N mineralization and microbial biomass in heavy-metal contaminated soil. Eur J Soil Biol 42:89–98

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wang S, Zhao X (2009) On the potential of biological treatment for arsenic contaminated soils and groundwater. J Environ Manag 90:2367–2376

    Article  CAS  Google Scholar 

  • Wang FE, Chen YX, Tian GM, Kumar S, He YF, Fu QL, Lin Q (2004) Microbial biomass carbon, nitrogen and phosphorus in the soil profiles of different vegetation covers established for soil rehabilitation in a red soil region of southeastern china. Nutr Cycl Agroecosys 68:181–189

    Article  CAS  Google Scholar 

  • Wang YP, Shi JY, Lin Q, Chen XC, Chen YX (2007) Heavy metal availability and impact on activity of soil microorganisms along a Cu/Zn contamination gradient. J Environ Sci 19:848–853

    Article  CAS  Google Scholar 

  • Wang Q, He M, Wang Y (2011) Influence of combined pollution of antimony and arsenic on culturable soil microbial populations and enzyme activities. Ecotoxicology 20:9–19

    Article  Google Scholar 

  • Williamson JC, Johnson DB (1994) Conservation of mineral nitrogen in restored soils at opencast coal mine sites: II. The effects of inhibition of nitrification and organic amendments on nitrogen losses and soil microbial biomass. Eur J Soil Sci 45:319–326

    Article  Google Scholar 

  • Wollum AG (1982) Cultural Methods for soil Microorganisms. In: Page AL, Miller RH, Keeny (eds) Methods of soil analysis. Part 2: chemical and microbiological properties, 2nd edn. ASA, Madison, pp 781–814

    Google Scholar 

  • Yang RY, Tang JJ, Chen X, Hu SJ (2007) Effects of coexisting plant species on soil microbes and soil enzymes in metal lead contaminated soils. Appl Soil Ecol 37:240–246

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Council for Scientific and Technological Development [Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-No 304574/2010-4)], the Coordination of Improvement of Higher Education Personnel [Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes)] and the Foundation for Research Support of the State of Minas Gerais [Fundação de Amparo à Pesquisa do estado de Minas Gerais (Fapemig) (Parceria CAPES-FAPEMIG- 2618/2012, Processo no 23038.008715/2012)] for their financial support and fellowships granted to the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Maria de Souza Moreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, J.V., de Melo Rangel, W., Azarias Guimarães, A. et al. Soil biological attributes in arsenic-contaminated gold mining sites after revegetation. Ecotoxicology 22, 1526–1537 (2013). https://doi.org/10.1007/s10646-013-1139-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-013-1139-9

Keywords

Navigation