Skip to main content

Advertisement

Log in

Mesenchymal stem cells: a trojan horse to treat glioblastoma

  • Review
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Glioblastoma multiforme (GBM) is the most common and lethal primary tumor of the central nervous system. What makes it so dreadful is the very low survival rate, despite the existence of a standard treatment plan. An innovative and more effective way to treat glioblastoma based on Mesenchymal Stem Cells (MSCs) has been explored recently. MSCs are a group of endogenous multipotent stem cells that could mainly be harvested from adipose tissue, bone marrow, and umbilical cord. Having the ability to migrate toward the tumor using multiple types of binding receptors, they could be used either as a direct treatment (whether they are enhanced or not) or as a delivery vehicle carrying various anti-tumoral agents. Some of these agents are: chemotherapy drugs, prodrug activating therapy, oncolytic viruses, nanoparticles, human artificial chromosome… Promising results have started to surface; however, more evidence is needed to perfect their use as a glioblastoma multiforme treatment option.

Graphical Abstract

Alternative treatment, using unloaded or loaded MSCs, leading to a better outcome

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

5-FC:

5-Fluorocytosine

5-FU:

5-Fluorouracil

AT-MSC:

Adipose Tissue Mesenchymal Stem Cell

BBB:

Blood brain barrier

BM-MSC:

Bone Marrow Mesenchymal Stem Cell

BMP-4:

Bone Morphogenic Protein

CM:

Conditioned Media

CNS:

Central nervous system

DAMP:

Damage Associated Molecular Pattern

ECM:

Extracellular matrix

EMT:

Epithelial-Mesenchymal Transition

Fc-diOH:

Ferrocenyl diphenol tamoxifen derivative

GBM:

Glioblastoma Multiforme

GCV:

Ganciclovir

GSC:

Glioma stem cell

HSV-TK:

Herpes Simplex Virus Thymidine Kinase

hTERT:

Human Telomerase Reverse Transcriptase

LNC:

Lipid Nanocapsules

miR:

MicroRNA

mRNA:

Messenger RNA

MSC:

Mesenchymal stem cell

NDV:

Newcastle Disease Virus

NK:

Natural Killer

NP:

Nanoparticles

PD:

Population Doublings

PTX:

Paclitaxel

ROS:

Reactive Oxygen Species

SFN:

Sorafenib

TGFß:

Tumor Growth Factor ß

TMZ:

Temozolomide

TRAIL:

TNF-related apoptosis-inducing ligand

UC-MSC:

Umbilical Cord Mesenchymal Stem Cells

UCB-MSC:

Umbilical Cord Blood Mesenchymal Stem Cells

UTR:

Untranslated Regions

XIAP:

X-Linked Inhibitor of Apoptosis

References

  1. Burt Nabors L et al (2013) Central nervous system cancers. J Natl Compr Canc Netw 1(9):1114–1151. https://doi.org/10.6004/JNCCN.2013.0132

    Article  Google Scholar 

  2. Lim M, Xia Y, Bettegowda C, Weller M (2018) Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol 15(7):422–442. https://doi.org/10.1038/S41571-018-0003-5

    Article  CAS  PubMed  Google Scholar 

  3. Ziu M, Schmidt NO, Cargioli TG, Aboody KS, Black PML, Carroll RS (2006) Glioma-produced extracellular matrix influences brain tumor tropism of human neural stem cells. J Neurooncol 79(2):125–133. https://doi.org/10.1007/S11060-006-9121-5

    Article  CAS  PubMed  Google Scholar 

  4. Berens ME, Giese A (1999) . . . those left behind.’ Biology and Oncology of Invasive Glioma Cells. Neoplasia 1(3). Nature Publishing Group, 208–219. https://doi.org/10.1038/sj.neo.7900034

  5. Mason WP (2015) Blood-brain barrier-associated efflux transporters: a significant but underappreciated obstacle to drug development in glioblastoma. Neuro Oncol 17(9):1181. https://doi.org/10.1093/NEUONC/NOV122

    Article  PubMed  PubMed Central  Google Scholar 

  6. Osswald M et al (2015) Brain tumour cells interconnect to a functional and resistant network. Nature 528(7580):93–98. https://doi.org/10.1038/nature16071

    Article  CAS  PubMed  Google Scholar 

  7. Sanchez-Diaz et al. (2013) Biodistribution of Mesenchymal Stromal Cells after Administration in Animal Models and Humans: A Systematic Review. J Clin Med 10(13). https://doi.org/10.3390/JCM10132925

  8. Motaln H, Schichor C, Lah TT (2010) Human mesenchymal stem cells and their use in cell-based therapies. Cancer 116(11):2519–2530. https://doi.org/10.1002/CNCR.25056

    Article  CAS  PubMed  Google Scholar 

  9. Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28(3):585–596. https://doi.org/10.1002/STEM.269

    Article  CAS  PubMed  Google Scholar 

  10. Nakamizo A et al (2005) Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 65(8):3307–3318. https://doi.org/10.1158/0008-5472.CAN-04-1874

    Article  CAS  PubMed  Google Scholar 

  11. Li M et al (2019) Transforming growth factor-β promotes homing and therapeutic efficacy of human mesenchymal stem cells to glioblastoma. J Neuropathol Exp Neurol 78(4):315–325. https://doi.org/10.1093/jnen/nlz016

    Article  CAS  PubMed  Google Scholar 

  12. Bexell D, Svensson A, Bengzon J (2013) Stem cell-based therapy for malignant glioma. Cancer Treat Rev 39(4):358–365. https://doi.org/10.1016/j.ctrv.2012.06.006

    Article  CAS  PubMed  Google Scholar 

  13. Van Velthoven CTJ, Kavelaars A, Van Bel F, Heijnen CJ (2010) Nasal administration of stem cells: a promising novel route to treat neonatal ischemic brain damage. Pediatr Res 68(5):419–422. https://doi.org/10.1203/PDR.0B013E3181F1C289

    Article  PubMed  Google Scholar 

  14. Lapidot T, Dar A, Kollet O (2005) How do stem cells find their way home? Blood 106(6):1901–1910. https://doi.org/10.1182/BLOOD-2005-04-1417

    Article  CAS  PubMed  Google Scholar 

  15. Ullah M, Liu DD, Thakor AS (2019) Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. iScience 15:421–438. https://doi.org/10.1016/J.ISCI.2019.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sasaki M, Abe R, Fujita Y, Ando S, Inokuma D, Shimizu H (2008) Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol 180(4):2581–2587. https://doi.org/10.4049/JIMMUNOL.180.4.2581

    Article  CAS  PubMed  Google Scholar 

  17. Peled A et al (2000) The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells: Role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95(11):3289–3296. https://doi.org/10.1182/blood.v95.11.3289.011k33_3289_3296

    Article  CAS  PubMed  Google Scholar 

  18. Szydlak R (2021) Biological, chemical and mechanical factors regulating migration and homing of mesenchymal stem cells. World J Stem Cells 13(6):619–631. https://doi.org/10.4252/WJSC.V13.I6.619

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rüster B et al (2006) Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood 108(12):3938–3944. https://doi.org/10.1182/BLOOD-2006-05-025098

    Article  PubMed  Google Scholar 

  20. Yang C et al (2014) Conditioned media from human adipose tissue-derived mesenchymal stem cells and umbilical cord-derived mesenchymal stem cells efficiently induced the apoptosis and differentiation in human glioma cell lines in vitro. Biomed Res Int 2014. https://doi.org/10.1155/2014/109389

  21. Velpula KK, Dasari VR, Tsung AJ, Dinh DH, Rao JS (2011) Cord blood stem cells revert glioma stem cell EMT by down regulating transcriptional activation of Sox2 and Twist1. Oncotarget 2(12):1028–1042. https://doi.org/10.18632/oncotarget.367

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mohanam S et al (2001) Down-regulation of cathepsin B expression impairs the invasive and tumorigenic potential of human glioblastoma cells. Oncogene 20(28):3665–3673. https://doi.org/10.1038/SJ.ONC.1204480

    Article  CAS  PubMed  Google Scholar 

  23. Stefani FR, Eberstål S, Vergani S, Kristiansen TA, Bengzon J (2018) Low-dose irradiated mesenchymal stromal cells break tumor defensive properties in vivo. Int J Cancer 143(9):2200–2212. https://doi.org/10.1002/ijc.31599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kang SG et al (2008) Cytotoxicity of human umbilical cord blood-derived mesenchymal stem cells against human malignant glioma cells. Child’s Nerv Syst 24(3):293–302. https://doi.org/10.1007/s00381-007-0515-2

    Article  Google Scholar 

  25. Nakamura K et al (2004) Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 11(14):1155–1164. https://doi.org/10.1038/sj.gt.3302276

    Article  CAS  PubMed  Google Scholar 

  26. Fan S et al (2020) Umbilical cord-derived mesenchymal stromal/stem cells expressing IL-24 induce apoptosis in gliomas. J Cell Physiol 235(2):1769–1779. https://doi.org/10.1002/JCP.29095

    Article  CAS  PubMed  Google Scholar 

  27. Foglietta F et al (2017) Selective sensitiveness of mesenchymal stem cells to shock waves leads to anticancer effect in human cancer cell co-cultures. Life Sci 173:28–35. https://doi.org/10.1016/j.lfs.2017.01.009

    Article  CAS  PubMed  Google Scholar 

  28. Goodarzi A et al (2020) Simultaneous impact of atorvastatin and mesenchymal stem cells for glioblastoma multiform suppression in rat glioblastoma multiform model. Mol Biol Rep 47(10):7783–7795. https://doi.org/10.1007/S11033-020-05855-Z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schiff P, Horwitz S (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 77(3):1561–1565. https://doi.org/10.1073/PNAS.77.3.1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zasadil LM et al (2014) Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles. Sci Transl Med 6(229). https://doi.org/10.1126/SCITRANSLMED.3007965

  31. Wilhelm S et al (2006) Discovery and development of sorafenib: A multikinase inhibitor for treating cancer. Nat Rev Drug Discov 5(10):835–844. https://doi.org/10.1038/nrd2130

    Article  CAS  PubMed  Google Scholar 

  32. Clavreul A, Pourbaghi-Masouleh M, Roger E, Lautram N, Montero-Menei CN, Menei P (2017) Human mesenchymal stromal cells as cellular drug-delivery vectors for glioblastoma therapy: A good deal? J Exp Clin Cancer Res 36(1). https://doi.org/10.1186/s13046-017-0605-2

  33. Liu S, Zhang P, Chen Z, Liu M, Li X, Tang H (2013) MicroRNA-7 downregulates XIAP expression to suppress cell growth and promote apoptosis in cervical cancer cells. FEBS Lett 587(14). https://doi.org/10.1016/j.febslet.2013.05.054

  34. Sharif S, Ghahremani MH, Soleimani M (2018) Delivery of Exogenous miR-124 to Glioblastoma Multiform Cells by Wharton’s Jelly Mesenchymal Stem Cells Decreases Cell Proliferation and Migration, and Confers Chemosensitivity. Stem Cell Rev Reports 14(2):236–246. https://doi.org/10.1007/s12015-017-9788-3

    Article  CAS  Google Scholar 

  35. Allahverdi A et al (2020) MicroRNA-4731-5p delivered by AD-mesenchymal stem cells induces cell cycle arrest and apoptosis in glioblastoma. J Cell Physiol 235(11):8167–8175. https://doi.org/10.1002/JCP.29472

    Article  CAS  PubMed  Google Scholar 

  36. Pastorakova A, Jakubechova J, Altanerova U, Altaner C (2020) Suicide Gene Therapy Mediated with Exosomes Produced by Mesenchymal Stem/Stromal Cells Stably Transduced with HSV Thymidine Kinase. Cancers (Basel) 12(5). https://doi.org/10.3390/CANCERS12051096

  37. Fischer U, Steffens S, Frank S, Rainov NG, Schulze-Osthoff K, Kramm CM (2005) Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/ 5-fluorocytosine suicide gene therapy-induced cell death in glioma cells. Oncogene 24(7):1231–1243. https://doi.org/10.1038/SJ.ONC.1208290

    Article  CAS  PubMed  Google Scholar 

  38. Moolten FL (1986) Tumor Chemosensitivity Conferred by Inserted Herpes Thymidine Kinase Genes: Paradigm for a Prospective Cancer Control Strategy. Cancer Res 46(10):5276–5281

    CAS  PubMed  Google Scholar 

  39. Immonen A et al (2004) AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: A randomised, controlled study. Mol Ther 10(5):967–972. https://doi.org/10.1016/j.ymthe.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  40. Singhal S, Kaiser LR (1998) Cancer chemotherapy using suicide genes - PubMed. https://pubmed.ncbi.nlm.nih.gov/9624215/ (accessed Jan. 17, 2022)

  41. Alieva M et al (2012) Glioblastoma therapy with cytotoxic mesenchymal stromal cells optimized by bioluminescence imaging of tumor and therapeutic cell response. PLoS One 7(4). https://doi.org/10.1371/journal.pone.0035148

  42. Kuriyama S et al (1998) Bystander effect caused by cytosine deaminase gene and 5-fluorocytosine in vitro is substantially mediated by generated 5-fluorouracil - PubMed. https://pubmed.ncbi.nlm.nih.gov/9858915/. Accessed 16 Jan 2022  

  43. Tu GXE, Ho YK, Ng ZX, Teo KJ, Yeo TT, Too HP (2020) A facile and scalable in production non-viral gene engineered mesenchymal stem cells for effective suppression of temozolomide-resistant (TMZR) glioblastoma growth. Stem Cell Res Ther 11(1):1–15. https://doi.org/10.1186/s13287-020-01899-x

    Article  CAS  Google Scholar 

  44. Choi SA et al (2012) Human adipose tissue-derived mesenchymal stem cells: Characteristics and therapeutic potential as cellular vehicles for prodrug gene therapy against brainstem gliomas. Eur J Cancer 48(1):129–137. https://doi.org/10.1016/j.ejca.2011.04.033

    Article  CAS  PubMed  Google Scholar 

  45. Tang X-J et al (2014) TRAIL-engineered Bone Marrow-derived Mesenchymal Stem Cells: TRAIL Expression and Cytotoxic Effects on C6 Glioma Cells. Anticancer Res. https://pubmed.ncbi.nlm.nih.gov/24511006/. Accessed 17 Jan 2022  

  46. Choi SH et al (2015) Antiangiogenic variant of TSP-1 targets tumor cells in glioblastomas. Mol Ther 23(2):235–243. https://doi.org/10.1038/mt.2014.214

    Article  CAS  PubMed  Google Scholar 

  47. Han HR, Park SA, Ahn S, Jeun SS, Ryu CH (2019) Evaluation of combination treatment effect with TRAIL-secreting mesenchymal stem cells and compound C against Glioblastoma. Anticancer Res 39(12):6635–6643. https://doi.org/10.21873/anticanres.13878

    Article  CAS  PubMed  Google Scholar 

  48. Chiocca EA, Rabkin SD (2014) Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol Res 2(4):295–300. https://doi.org/10.1158/2326-6066.CIR-14-0015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Martinez-Quintanilla J, He D, Wakimoto H, Alemany R, Shah K (2015) Encapsulated stem cells loaded with hyaluronidase-expressing oncolytic virus for brain tumor therapy. Mol Ther 23(1):108–118. https://doi.org/10.1038/mt.2014.204

    Article  CAS  PubMed  Google Scholar 

  50. Duebgen M et al (2014) Stem cells loaded with multimechanistic oncolytic herpes simplex virus variants for brain tumor therapy. J Natl Cancer Inst 106(6):9. https://doi.org/10.1093/jnci/dju090

    Article  Google Scholar 

  51. Kazimirsky G, Jiang W, Slavin S, Ziv-Av A, Brodie C (2016) Mesenchymal stem cells enhance the oncolytic effect of Newcastle disease virus in glioma cells and glioma stem cells via the secretion of TRAIL. Stem Cell Res Ther 7(1):1–10. https://doi.org/10.1186/s13287-016-0414-0

    Article  Google Scholar 

  52. Yong RL et al (2009) Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Δ24-RGD to human gliomas. Cancer Res 69(23):8932–8940. https://doi.org/10.1158/0008-5472.CAN-08-3873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mangraviti A et al (2016) Non-virally engineered human adipose mesenchymal stem cells produce BMP4, target brain tumors, and extend survival. Biomaterials 100:53–66. https://doi.org/10.1016/J.BIOMATERIALS.2016.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vessières A et al (2010) A ferrocenyl derivative of hydroxytamoxifen elicits an estrogen receptor-independent mechanism of action in breast cancer cell lines. J Inorg Biochem 104(5):503–511. https://doi.org/10.1016/j.jinorgbio.2009.12.020

    Article  CAS  PubMed  Google Scholar 

  55. Roger M et al (2012) Ferrociphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy. Int J Pharm 423(1):63–68. https://doi.org/10.1016/j.ijpharm.2011.04.058

    Article  CAS  PubMed  Google Scholar 

  56. Akimoto K et al (2013) Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells Dev 22(9):1370–1386. https://doi.org/10.1089/SCD.2012.0486

    Article  CAS  PubMed  Google Scholar 

  57. Lalu MM et al (2012) Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One 7(10). https://doi.org/10.1371/journal.pone.0047559

  58. Novak M et al (2020) CCR5-mediated signaling is involved in invasion of glioblastoma cells in its microenvironment. Int J Mol Sci 21(12):1–20. https://doi.org/10.3390/ijms21124199

    Article  CAS  Google Scholar 

  59. Stolzing A, Jones E, McGonagle D, Scutt A (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: Consequences for cell therapies. Mech Ageing Dev 129(3):163–173. https://doi.org/10.1016/j.mad.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  60. Böcker W et al (2008) Introducing a single-cell-derived human mesenchymal stem cell line expressing hTERT after lentiviral gene transfer. J Cell Mol Med 12(4):1347. https://doi.org/10.1111/J.1582-4934.2008.00299.X

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

There is no financial interest, whether from public, commercial, or not-for-profit sectors to report.

Author information

Authors and Affiliations

Authors

Contributions

In this study, Antoine Chartouni, Marc Boutros, Fouad Attieh, Antoine Mouawad and Nicolas Medawar were all responsible of the investigation and gathering the information, data curation, writing and editing the draft original and the final review. On the other hand, Dr. Hampig Raphaël Kourie was supervising the project, and was responsible for the project administration as well as the validation of the research.

Corresponding author

Correspondence to Antoine Chartouni.

Ethics declarations

Competing interests

On behalf of all authors, the corresponding author states that there is no conflict of interest. All co-authors have seen and agree with the contents of the manuscript.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chartouni, A., Mouawad, A., Boutros, M. et al. Mesenchymal stem cells: a trojan horse to treat glioblastoma. Invest New Drugs 41, 240–250 (2023). https://doi.org/10.1007/s10637-023-01352-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-023-01352-9

Keywords

Navigation