Skip to main content
Log in

Comparison of the uniform-field electroretinogram and the pattern electroretinogram to checkerboard and bar gratings

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose

To compare the electroretinal response associated with the uniform-field electroretinogram (UF-ERG) to that of the pattern electroretinogram (PERG) to checkerboard and bar-grating stimuli.

Methods

UF-ERG and PERG to bars and checkerboard were recorded for 18 visually normal subjects (36 eyes) of mean age 45 years (range 20–75). UF-ERG was recorded to the increment and decrement of a 200-ms duration luminance modulation. Luminance onset and offset UF-ERG responses were averaged to produce a simulation of the PERG response. The mean amplitude and implicit time for the P50 and N95 potentials of actual and simulated PERG responses were recorded for each eye in the cohort.

Results

The simulated PERG waveform resulting from arithmetic averaging of the UF-ERG to luminance increment and decrement was characterized by prominent positive and negative components resembling those of the P50 and N95 PERG potentials. Implicit timing of the P50 potential was lengthened in the actual PERG to bars and checks relative to that of the simulation (P < 0.05, P < 0.001). Amplitude of the N95 potential was greater in the PERG to bars than in the PERG to checks (P < 0.05) or the simulated PERG (P < 0.001). The amplitude and implicit timing of all waveform components were significantly correlated between the actual and simulated PERG.

Conclusions

The UF-ERG to light onset and offset can be reliably recorded in human subjects. The extent to which the simulated PERG recapitulates the actual PERG response is better with checkerboard rather than bar-grating stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Viswanathan S, Frishman LJ, Robson JG et al (1999) The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 40:1124–1136

    CAS  PubMed  Google Scholar 

  2. Viswanathan S, Frishman LJ, Robson JG (2000) The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 41:2797–2810

    CAS  PubMed  Google Scholar 

  3. Bush RA, Sieving PA (1994) A proximal retinal component in the primate photopic ERG a-wave. Invest Ophthalmol Vis Sci 35:635–645

    CAS  PubMed  Google Scholar 

  4. Sieving PA, Murayama K, Naarendorp F (1994) Push–pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci 11:519–532. https://doi.org/10.1017/S0952523800002431

    Article  CAS  PubMed  Google Scholar 

  5. Ueno S, Kondo M, Ueno M et al (2006) Contribution of retinal neurons to d-wave of primate photopic electroretinograms. Vision Res 46:658–664. https://doi.org/10.1016/j.visres.2005.05.026

    Article  PubMed  Google Scholar 

  6. Khan NW, Kondo M, Hiriyanna KT et al (2005) Primate retinal signaling pathways: suppressing on-pathway activity in monkey with glutamate analogues mimics human CSNB1-NYX genetic night blindness. J Neurophysiol 93:481–492. https://doi.org/10.1152/jn.00365.2004

    Article  CAS  PubMed  Google Scholar 

  7. Simpson MC, Viswanathan S (2007) Comparison of uniform field and pattern electroretinograms of humans. J Mod Opt 54:1281–1288. https://doi.org/10.1080/09500340600855148

    Article  Google Scholar 

  8. Viswanathan S, Frishman LJ, Robson JG, Walters JW (2001) The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Investig Ophthalmol Vis Sci 42:514–522

    CAS  Google Scholar 

  9. Ventura LM, Porciatti V (2006) Pattern electroretinogram in glaucoma. Curr Opin Ophthalmol 17:196–202. https://doi.org/10.1097/01.icu.0000193082.44938.3c

    Article  PubMed  PubMed Central  Google Scholar 

  10. Porciatti V, Ventura LM (2017) The PERG as a tool for early detection and monitoring of glaucoma. Curr Ophthalmol Rep 5:7–13. https://doi.org/10.1007/s40135-017-0128-1

    Article  Google Scholar 

  11. Viswanathan S, Frishman LJ, Robson JG, Walters JW (2001) The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Investig Ophthalmol Vis Sci 53:1315–1323. https://doi.org/10.1167/iovs.11-8461

    Article  Google Scholar 

  12. Colotto A, Falsini B, Salgarello T et al (2000) Photopic negative response of the human ERG: losses associated with glaucomatous damage. Investig Ophthalmol Vis Sci 41:2205–2211

    CAS  Google Scholar 

  13. Machida S, Gotoh Y, Toba Y et al (2008) Correlation between photopic negative response and retinal nerve fiber layer thickness and optic disc topography in glaucomatous eyes. Investig Ophthalmol Vis Sci 49:2201–2207. https://doi.org/10.1167/iovs.07-0887

    Article  Google Scholar 

  14. Sustar M, Cvenkel B, Brecelj J (2009) The effect of broadband and monochromatic stimuli on the photopic negative response of the electroretinogram in normal subjects and in open-angle glaucoma patients. Doc Ophthalmol 118:167–177. https://doi.org/10.1007/s10633-008-9150-9

    Article  PubMed  Google Scholar 

  15. Miyake Y, Yagasaki K, Horiguchi M et al (1986) Congenital stationary night blindness with negative electroretinogram. A new classification. Arch Ophthalmol 104:1013–1020. https://doi.org/10.1001/archopht.1986.01050190071042

    Article  CAS  PubMed  Google Scholar 

  16. Horn FK, Gottschalk K, Mardin CY et al (2011) On and off responses of the photopic fullfield ERG in normal subjects and glaucoma patients. Doc Ophthalmol 122:53–62. https://doi.org/10.1007/s10633-011-9258-1

    Article  PubMed  Google Scholar 

  17. Pangeni G, Lämmer R, Tornow RP et al (2012) On- and off-response ERGs elicited by sawtooth stimuli in normal subjects and glaucoma patients. Doc Ophthalmol 124:237–248. https://doi.org/10.1007/s10633-012-9323-4

    Article  PubMed  Google Scholar 

  18. Kondo M, Kurimoto Y, Sakai T et al (2008) Recording focal macular photopic negative response (PhNR) from monkeys. Investig Ophthalmol Vis Sci 49:3544–3550. https://doi.org/10.1167/iovs.08-1798

    Article  Google Scholar 

  19. Bach M, Brigell MG, Hawlina M et al (2013) ISCEV standard for clinical pattern electroretinography (PERG): 2012 update. Doc Ophthalmol 126:1–7. https://doi.org/10.1007/s10633-012-9353-y

    Article  PubMed  Google Scholar 

  20. Vaegan Arden GB (1987) Effect of pattern luminance profile on the pattern ERG in man and pigeon. Vision Res 27:883–892

    Article  CAS  Google Scholar 

  21. Kelly DH (1976) Pattern detection and the two-dimensional Fourier transform: flickering checkerboards and chromatic mechanisms. Vision Res. https://doi.org/10.1016/0042-6989(76)90111-5

    Article  PubMed  Google Scholar 

  22. Hess RF, Baker CL (1984) Human pattern-evoked electroretinogram. J Neurophysiol 51:939–951. https://doi.org/10.1152/jn.1984.51.5.939

    Article  CAS  PubMed  Google Scholar 

  23. Thompson D, Drasdo N (1989) The effect of stimulus contrast on the latency and amplitude of the pattern electroretinogram. Vision Res 29:309–313. https://doi.org/10.1016/0042-6989(89)90079-5

    Article  CAS  PubMed  Google Scholar 

  24. Zapf HR, Bach M (1999) The contrast characteristic of the pattern electroretinogram depends on temporal frequency. Graefes Arch Clin Exp Ophthalmol 237:93–99

    Article  CAS  Google Scholar 

  25. Ben-Shlomo G, Bach M, Ofri R (2007) Temporal and spatial frequencies interact in the contrast transfer function of the pattern electroretinogram. Vision Res 47:1992–1999. https://doi.org/10.1016/J.VISRES.2007.04.009

    Article  CAS  PubMed  Google Scholar 

  26. Heinrich TS, Bach M (2001) Contrast adaptation in human retina and cortex. Investig Ophthalmol Vis Sci 42:2721–2727

    CAS  Google Scholar 

  27. Bach M, Waltenspiel S, Bühler B, Röver J (1985) Visual pathway diagnosis using the simultaneous registration of retinal and cortical pattern potentials. Fortschr Ophthalmol 82:398–401

    CAS  PubMed  Google Scholar 

  28. Sakaue H, Katsumi O, Mehta M, Hirose T (1990) Simultaneous pattern reversal ERG and VER recordings. Effect of stimulus field and central scotoma. Investig Ophthalmol Vis Sci 31:506

    CAS  Google Scholar 

  29. Bach M, Schumacher M (2002) The influence of ambient room lighting on the pattern electroretinogram (PERG). Doc Ophthalmol 105:281–289. https://doi.org/10.1023/A:1021254427782

    Article  PubMed  Google Scholar 

  30. Porciatti V, Burr DC, Morrone MC, Fiorentini A (1992) The effects of aging on the pattern electroretinogram and visual evoked potential in humans. Vision Res 32:1199–1209

    Article  CAS  Google Scholar 

  31. Birch DG, Anderson JL (1992) Standardized full-field electroretinography: normal values and their variation with age. Arch Ophthalmol 110:1571–1576. https://doi.org/10.1001/archopht.1992.01080230071024

    Article  CAS  PubMed  Google Scholar 

  32. Spekreijse H, Estévez O, Van der Tweel LH (1973) Luminance responses to pattern reversal. In: Xth I.S.C.E.R.G. symposium. Documenta ophthalmologica proceedings Series, vol 2. Springer, Dordrecht, pp 205–211

    Chapter  Google Scholar 

  33. Sieving PA (1993) Photopic ON- and OFF-pathway abnormalities in retinal dystrophies. Trans Am Ophthalmol Soc 91:701–773

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by The Ottawa Hospital Department of Ophthalmology Research Funds (TOH DORF) allocated to SGC (2017–2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart G. Coupland.

Ethics declarations

Conflict of interest

Dr. Stuart G. Coupland functions as a consultant to Diagnosys and has indirect financial interest in the technology employed in this research study. He was not involved in subject recruitment, testing, or data entry. He did not receive any compensation for his role in this study.

Ethical approval

Data collection was conducted in accordance with the World Medical Board Declaration of Helsinki, and the study protocol was approved by the Research Ethics Board at The Ottawa Hospital (2016-0190).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Statement of human rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Statement on the welfare of animals

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lingley, A.J., Kantungane, AL. & Coupland, S.G. Comparison of the uniform-field electroretinogram and the pattern electroretinogram to checkerboard and bar gratings. Doc Ophthalmol 140, 13–21 (2020). https://doi.org/10.1007/s10633-019-09714-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-019-09714-6

Keywords

Navigation