Skip to main content

Advertisement

Log in

Discovery of CCL18 antagonist blocking breast cancer metastasis

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Our previous studies have proved that CCL18 is the most secreted chemokine in breast cancer microenvironment by tumor associated macrophages (TAMs). CCL18 promotes breast cancer invasiveness by binding to its cognate receptor PITPNM3 and activating the downstream signaling pathways. The high level of CCL18 in serum or tumor stroma is associated with tumor metastasis and poor patients overall survival. In this study, we identify an effective small molecular compound (SMC) to antagonize the effect of CCL18. We screen more than 1000 SMCs from Sun Yat-sen University SMC library and select 15 top scored SMCs by using computer-aided virtual screening based on the structure of CCL18. Then in vitro cell migration assay narrows down the selected 15 SMCs to the most effective SMC-21598. We find 10 µM SMC-21598 significantly inhibits CCL18-induced breast cancer cells adherence, invasiveness, and migration. Our further surface plasmon resonance (SPR), fluorescence spectroscopy and isothermal titration calorimetry (ITC) assays reveal that SMC-21598 binds tightly to CCL18, which blocks the binding of CCL18 with its receptor PITPNM3. The in vivo animal experiments show that SMC-21598 doesn’t significantly affect xenografts growth, but inhibits lung metastasis. Our study provides a potential lead compound to antagonize CCL18 function. It would be of great significance to develop SMC drugs to ameliorate breast cancer metastasis and prolong patients’ survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Su S, Chen J, Yao H, Liu J, Yu S, Lao L et al (2018) CD10(+)GPR77(+) cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 172(841–856):e816

    Google Scholar 

  2. Su S, Wu W, He C, Liu Q, Song E (2014) Breaking the vicious cycle between breast cancer cells and tumor-associated macrophages. Oncoimmunology 3:e953418

    Article  PubMed  PubMed Central  Google Scholar 

  3. Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol/Hematol 66:1–9

    Article  Google Scholar 

  4. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266

    Article  CAS  PubMed  Google Scholar 

  5. Chen J, Yao Y, Gong C, Yu F, Su S, Chen J et al (2011) CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell 19:541–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Su S, Liu Q, Chen J, Chen J, Chen F, He C et al (2014) A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 25:605–620

    Article  CAS  PubMed  Google Scholar 

  7. Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22:231–237

    Article  CAS  PubMed  Google Scholar 

  8. Bottazzi B, Polentarutti N, Acero R, Balsari A, Boraschi D, Ghezzi P et al (1983) Regulation of the macrophage content of neoplasms by chemoattractants. Science 220:210–212

    Article  CAS  PubMed  Google Scholar 

  9. Ruffell B, Coussens LM (2015) Macrophages and therapeutic resistance in cancer. Cancer Cell 27:462–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86:1065–1073

    Article  CAS  PubMed  Google Scholar 

  11. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78

    Article  CAS  Google Scholar 

  12. Mantovani A, Marchesi F, Porta C, Sica A, Allavena P (2007) Inflammation and cancer: breast cancer as a prototype. Breast 16(Suppl 2):S27–33

    Article  PubMed  Google Scholar 

  13. Yuan L, Wan J, Huang C, Liang J, Liu M, Yue C et al (2017) Evaluation of serum CCL18 as a potential biomarker for ovarian cancer. Cancer Biomark 21:97–104

    Article  CAS  PubMed  Google Scholar 

  14. Schutyser E, Struyf S, Proost P, Opdenakker G, Laureys G, Verhasselt B et al (2002) Identification of biologically active chemokine isoforms from ascitic fluid and elevated levels of CCL18/pulmonary and activation-regulated chemokine in ovarian carcinoma. J Biol Chem 277:24584–24593

    Article  CAS  PubMed  Google Scholar 

  15. Miyake M, Ross S, Lawton A, Chang M, Dai Y, Mengual L et al (2013) Investigation of CCL18 and A1AT as potential urinary biomarkers for bladder cancer detection. BMC Urol 13:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huang D, Song SJ, Wu ZZ, Wu W, Cui XY, Chen JN et al (2017) Epstein-barr virus-induced VEGF and GM-CSF drive nasopharyngeal carcinoma metastasis via recruitment and activation of macrophages. Can Res 77:3591–3604

    Article  CAS  Google Scholar 

  17. Chenivesse C, Tsicopoulos A (2018) CCL18—beyond chemotaxis. Cytokine 109:52–56

    Article  CAS  PubMed  Google Scholar 

  18. Gunther C, Zimmermann N, Berndt N, Grosser M, Stein A, Koch A et al (2011) Up-regulation of the chemokine CCL18 by macrophages is a potential immunomodulatory pathway in cutaneous T-cell lymphoma. Am J Pathol 179:1434–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang G, Guo S, Cui H, Qi J (2018) Virtual screening of small molecular inhibitors against DprE1. Molecules 23:524

    Article  CAS  PubMed Central  Google Scholar 

  20. Li Y, Su M, Liu Z, Li J, Liu J, Han L et al (2018) Assessing protein-ligand interaction scoring functions with the CASF-2013 benchmark. Nat Protoc 13:666–680

    Article  CAS  PubMed  Google Scholar 

  21. Xie L, Xie L, Kinnings SL, Bourne PE (2012) Novel computational approaches to polypharmacology as a means to define responses to individual drugs. Annu Rev Pharmacol Toxicol 52:361–379

    Article  CAS  PubMed  Google Scholar 

  22. Liang WG, Ren M, Zhao F, Tang WJ (2015) Structures of human CCL18, CCL3, and CCL4 reveal molecular determinants for quaternary structures and sensitivity to insulin-degrading enzyme. J Mol Biol 427:1345–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Struyf S, Schutyser E, Gouwy M, Gijsbers K, Proost P, Benoit Y et al (2003) PARC/CCL18 is a plasma CC chemokine with increased levels in childhood acute lymphoblastic leukemia. Am J Pathol 163:2065–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wlodawer A (2002) Rational approach to AIDS drug design through structural biology. Annu Rev Med 53:595–614

    Article  CAS  PubMed  Google Scholar 

  25. Su S, Liao J, Liu J, Huang D, He C, Chen F et al (2017) Blocking the recruitment of naive CD4(+) T cells reverses immunosuppression in breast cancer. Cell Res 27:461–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chenivesse C, Chang Y, Azzaoui I, Ait Yahia S, Morales O, Ple C et al (2012) Pulmonary CCL18 recruits human regulatory T cells. J Immunol 189:128–137

    Article  CAS  PubMed  Google Scholar 

  27. Atamas SP, Luzina IG, Choi J, Tsymbalyuk N, Carbonetti NH, Singh IS et al (2003) Pulmonary and activation-regulated chemokine stimulates collagen production in lung fibroblasts. Am J Respir Cell Mol Biol 29:743–749

    Article  CAS  PubMed  Google Scholar 

  28. Pardo A, Smith KM, Abrams J, Coffman R, Bustos M, McClanahan TK et al (2001) CCL18/DC-CK-1/PARC up-regulation in hypersensitivity pneumonitis. J Leukoc Biol 70:610–616

    CAS  PubMed  Google Scholar 

  29. Broxmeyer HE, Kim CH, Cooper SH, Hangoc G, Hromas R, Pelus LM (1999) Effects of CC, CXC, C, and CX3C chemokines on proliferation of myeloid progenitor cells, and insights into SDF-1-induced chemotaxis of progenitors. Ann NY Acad Sci 872:142–162

    Article  CAS  PubMed  Google Scholar 

  30. Gunther C, Bello-Fernandez C, Kopp T, Kund J, Carballido-Perrig N, Hinteregger S et al (2005) CCL18 is expressed in atopic dermatitis and mediates skin homing of human memory T cells. J Immunol 174:1723–1728

    Article  PubMed  Google Scholar 

  31. Hector A, Kroner C, Carevic M, Bakele M, Rieber N, Riethmuller J et al (2014) The chemokine CCL18 characterises Pseudomonas infections in cystic fibrosis lung disease. Eur Respir J 44:1608–1615

    Article  CAS  PubMed  Google Scholar 

  32. Godessart N, Kunkel SL (2001) Chemokines in autoimmune disease. Curr Opin Immunol 13:670–675

    Article  CAS  PubMed  Google Scholar 

  33. Ohlstein EH, Ruffolo RR Jr, Elliott JD (2000) Drug discovery in the next millennium. Annu Rev Pharmacol Toxicol 40:177–191

    Article  CAS  PubMed  Google Scholar 

  34. Haraguchi S, Day NK, Kamchaisatian W, Beigier-Pompadre M, Stenger S, Tangsinmankong N et al (2006) LMP-420, a small-molecule inhibitor of TNF-alpha, reduces replication of HIV-1 and Mycobacterium tuberculosis in human cells. AIDS Res Therapy 3:8

    Article  CAS  Google Scholar 

  35. Wada Y, Lu R, Zhou D, Chu J, Przewloka T, Zhang S et al (2007) Selective abrogation of Th1 response by STA-5326, a potent IL-12/IL-23 inhibitor. Blood 109:1156–1164

    Article  CAS  PubMed  Google Scholar 

  36. Silvian LF, Friedman JE, Strauch K, Cachero TG, Day ES, Qian F et al (2011) Small molecule inhibition of the TNF family cytokine CD40 ligand through a subunit fracture mechanism. ACS Chem Biol 6:636–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Natural Science Foundation of China (81672622, 81772828, 81720108029, 81621004, 81490750, 81272900, 81172537), the National Key Research and Development Program of China (2016YFC1302300), Guangdong Science and Technology Department (2016B030229004, 2016A020216028), Guangzhou Science Technology and Innovation Commission (201803040015).

Author information

Authors and Affiliations

Authors

Contributions

YL, ES, JC and DL conceived and designed the experiments. YL and HZ equally did the experiment. QL, SL and HL provide animal experiment guide and management. JC and DL are co-PI and supervisor for this research.

Corresponding authors

Correspondence to Ding Li or Jingqi Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jingqi Chen—Lead contact.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zheng, H., Li, Q. et al. Discovery of CCL18 antagonist blocking breast cancer metastasis. Clin Exp Metastasis 36, 243–255 (2019). https://doi.org/10.1007/s10585-019-09965-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-019-09965-2

Keywords

Navigation