Skip to main content

Advertisement

Log in

Stepping out of the flow: capillary extravasation in cancer metastasis

  • Review Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

In order for cancer cells to successfully colonize a metastatic site, they must detach from the primary tumor using extracellular matrix-degrading proteases, intravasate and survive in the circulation, evade the immune response, and extravasate the vasculature to invade the target tissue parenchyma, where metastatic foci are established. Though many of the steps of metastasis are widely studied, the precise cellular interactions and molecular alterations associated with extravasation are unknown, and further study is needed to elucidate the mechanisms inherent to this process. Studies of leukocytes localized to inflamed tissue during the immune response may be used to elucidate the process of cancer extravasation, since leukocyte diapedesis through the vasculature involves critical adhesive interactions with endothelial cells, and both leukocytes and cancer cells express similar surface receptors capable of binding endothelial adhesion molecules. Thus, leukocyte extravasation during the inflammatory response has provided a model for transendothelial migration (TEM) of cancer cells. Leukocyte extravasation is characterized by a process whereby rolling mediated by cytokine-activated endothelial selectins is followed by firmer adhesions with β1 and β2 integrin subunits to an activated endothelium and subsequent diapedesis, which most likely involves activation of Rho GTPases, regulators of cytoskeletal rearrangements and motility. It is controversial whether such selectin-mediated rolling is necessary for TEM of cancer cells. However, it has been established that similar stable adhesions between tumor and endothelial cells precede cancer cell transmigration through the endothelium. Additionally, there is support for the preferential attachment of tumor cells to the endothelium and, accordingly, site-specific metastasis of cancer cells. Rho GTPases are critical to TEM of cancer cells as well, and some progress has been made in understanding the specific roles of the Rho GTPase family, though much is still unknown. As the mechanisms of cancer TEM are elucidated, new approaches to study and target metastasis may be utilized and developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Folkman J (1992) The role of angiogenesis in tumor growth. Semin Cancer Biol 3:65–71

    PubMed  CAS  Google Scholar 

  2. Fidler IJ (1999) Critical determinants of cancer metastasis: rationale for therapy. Cancer Chemother Pharmacol 43(Suppl):S3–S10

    Article  PubMed  CAS  Google Scholar 

  3. Chambers AF, Naumov GN, Varghese HJ et al (2001) Critical steps in hematogenous metastasis: an overview. Surg Oncol Clin N Am 10:243–255

    PubMed  CAS  Google Scholar 

  4. Langley RR, Fidler IJ (2007) Tumor cell–organ microenvironment interactions in the pathogenesis of cancer metastasis. Endocr Rev 28:297–321

    Article  PubMed  CAS  Google Scholar 

  5. Kohn EC (1991) Invasion and metastasis: biology and clinical potential. Pharmacol Ther 52:235–244

    Article  PubMed  CAS  Google Scholar 

  6. Tantivejkul K, Kalikin LM, Pienta KJ (2004) Dynamic process of prostate cancer metastasis to bone. J Cell Biochem 91:706–717

    Article  PubMed  CAS  Google Scholar 

  7. Zetter BR (1993) Adhesion molecules in tumor metastasis. Semin Cancer Biol 4:219–229

    PubMed  CAS  Google Scholar 

  8. Chambers AF, MacDonald IC, Schmidt EE, Morris VL, Groom AC (2000) Clinical targets for anti-metastasis therapy. Adv Cancer Res 79:91–121

    Article  PubMed  CAS  Google Scholar 

  9. Stewart DA, Cooper CR, Sikes RA (2004) Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reprod Biol Endocrinol 2:2

    Article  PubMed  Google Scholar 

  10. Tonnesen MG, Anderson DC, Springer TA et al (1989) Adherence of neutrophils to cultured human microvascular endothelial cells. Stimulation by chemotactic peptides and lipid mediators and dependence upon the Mac-1, LFA-1, p150,95 glycoprotein family. J Clin Invest 83:637–646

    Article  PubMed  CAS  Google Scholar 

  11. Galdiero M, de l’Ero GC, Marcatili A (1997) Cytokine and adhesion molecule expression in human monocytes and endothelial cells stimulated with bacterial heat shock proteins. Infect Immun 65:699–707

    PubMed  CAS  Google Scholar 

  12. van Wely CA, Beverley PC, Brett SJ, Britten CJ, Tite JP (1999) Expression of L-selectin on Th1 cells is regulated by IL-12. J Immunol 163:1214–1221

    PubMed  Google Scholar 

  13. Wyble CW, Hynes KL, Kuchibhotla J et al (1997) TNF-alpha and IL-1 upregulate membrane-bound and soluble E-selectin through a common pathway. J Surg Res 73:107–112

    Article  PubMed  CAS  Google Scholar 

  14. Osborn L, Hession C, Tizard R et al (1989) Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59:1203–1211

    Article  PubMed  CAS  Google Scholar 

  15. Rice GE, Bevilacqua MP (1989) An inducible endothelial cell surface glycoprotein mediates melanoma adhesion. Science 246:1303–1306

    Article  PubMed  CAS  Google Scholar 

  16. Brunk DK, Goetz DJ, Hammer DA (1996) Sialyl Lewis(x)/E-selectin-mediated rolling in a cell-free system. Biophys J 71:2902–2907

    Article  PubMed  CAS  Google Scholar 

  17. Simon SI, Green CE (2005) Molecular mechanics and dynamics of leukocyte recruitment during inflammation. Annu Rev Biomed Eng 7:151–185

    Article  PubMed  CAS  Google Scholar 

  18. Mayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD (1993) Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell 74:541–554

    Article  PubMed  CAS  Google Scholar 

  19. Gopalan PK, Smith CW, Lu H et al (1997) Neutrophil CD18-dependent arrest on intercellular adhesion molecule 1 (ICAM-1) in shear flow can be activated through L-selectin. J Immunol 158:367–375

    PubMed  CAS  Google Scholar 

  20. Sriramarao P, Norton CR, Borgstrom P et al (1996) E-selectin preferentially supports neutrophil but not eosinophil rolling under conditions of flow in vitro and in vivo. J Immunol 157:4672–4680

    PubMed  CAS  Google Scholar 

  21. Sriramarao P, von Andrian UH, Butcher EC, Bourdon MA, Broide DH (1994) L-selectin and very late antigen-4 integrin promote eosinophil rolling at physiological shear rates in vivo. J Immunol 153:4238–4246

    PubMed  CAS  Google Scholar 

  22. von Andrian UH, Chambers JD, McEvoy LM et al (1991) Two-step model of leukocyte–endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte beta 2 integrins in vivo. Proc Natl Acad Sci USA 88:7538–7542

    Article  Google Scholar 

  23. Simon SI, Hu Y, Vestweber D, Smith CW (2000) Neutrophil tethering on E-selectin activates beta 2 integrin binding to ICAM-1 through a mitogen-activated protein kinase signal transduction pathway. J Immunol 164:4348–4358

    PubMed  CAS  Google Scholar 

  24. Simon SI, Burns AR, Taylor AD et al (1995) L-selectin (CD62L) cross-linking signals neutrophil adhesive functions via the Mac-1 (CD11b/CD18) beta 2-integrin. J Immunol 155:1502–1514

    PubMed  CAS  Google Scholar 

  25. Ley K, Bullard DC, Arbones ML et al (1995) Sequential contribution of L- and P-selectin to leukocyte rolling in vivo. J Exp Med 181:669–675

    Article  PubMed  CAS  Google Scholar 

  26. Bargatze RF, Jutila MA, Butcher EC (1995) Distinct roles of L-selectin and integrins alpha 4 beta 7 and LFA-1 in lymphocyte homing to Peyer’s patch-HEV in situ: the multistep model confirmed and refined. Immunity 3:99–108

    Article  PubMed  CAS  Google Scholar 

  27. Zimmerman GA, Prescott SM, McIntyre TM (1992) Endothelial cell interactions with granulocytes: tethering and signaling molecules. Immunol Today 13:93–100

    Article  PubMed  CAS  Google Scholar 

  28. Petruzzelli L, Takami M, Humes HD (1999) Structure and function of cell adhesion molecules. Am J Med 106:467–476

    Article  PubMed  CAS  Google Scholar 

  29. Kobayashi H, Boelte KC, Lin PC (2007) Endothelial cell adhesion molecules and cancer progression. Curr Med Chem 14:377–386

    Article  PubMed  CAS  Google Scholar 

  30. Zernecke A, Weber KS, Erwig LP et al (2001) Combinatorial model of chemokine involvement in glomerular monocyte recruitment: role of CXC chemokine receptor 2 in infiltration during nephrotoxic nephritis. J Immunol 166:5755–5762

    PubMed  CAS  Google Scholar 

  31. McIntyre TM, Prescott SM, Weyrich AS, Zimmerman GA (2003) Cell–cell interactions: leukocyte–endothelial interactions. Curr Opin Hematol 10:150–158

    Article  PubMed  CAS  Google Scholar 

  32. Oppenheimer-Marks N, Davis LS, Bogue DT, Ramberg J, Lipsky PE (1991) Differential utilization of ICAM-1 and VCAM-1 during the adhesion and transendothelial migration of human T lymphocytes. J Immunol 147:2913–2921

    PubMed  CAS  Google Scholar 

  33. Reiss Y, Engelhardt B (1999) T cell interaction with ICAM-1-deficient endothelium in vitro: transendothelial migration of different T cell populations is mediated by endothelial ICAM-1 and ICAM-2. Int Immunol 11:1527–1539

    Article  PubMed  CAS  Google Scholar 

  34. Wong D, Prameya R, Dorovini-Zis K (1999) In vitro adhesion and migration of T lymphocytes across monolayers of human brain microvessel endothelial cells: regulation by ICAM-1, VCAM-1, E-selectin and PECAM-1. J Neuropathol Exp Neurol 58:138–152

    Article  PubMed  CAS  Google Scholar 

  35. Ostermann G, Weber KS, Zernecke A, Schroder A, Weber C (2002) JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol 3:151–158

    Article  PubMed  CAS  Google Scholar 

  36. Greenwood J, Wang Y, Calder VL (1995) Lymphocyte adhesion and transendothelial migration in the central nervous system: the role of LFA-1, ICAM-1, VLA-4 and VCAM-1. off. Immunology 86:408–415

    PubMed  CAS  Google Scholar 

  37. DiVietro JA, Brown DC, Sklar LA, Larson RS, Lawrence MB (2007) Immobilized stromal cell-derived factor-1alpha triggers rapid VLA-4 affinity increases to stabilize lymphocyte tethers on VCAM-1 and subsequently initiate firm adhesion. J Immunol 178:3903–3911

    PubMed  CAS  Google Scholar 

  38. Hidalgo A, Sanz-Rodriguez F, Rodriguez-Fernandez JL et al (2001) Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-dependent adhesion to fibronectin and VCAM-1 on bone marrow hematopoietic progenitor cells. Exp Hematol 29:345–355

    Article  PubMed  CAS  Google Scholar 

  39. Reinhardt PH, Elliott JF, Kubes P (1997) Neutrophils can adhere via alpha4beta1-integrin under flow conditions. Blood 89:3837–3846

    PubMed  CAS  Google Scholar 

  40. Weber C, Alon R, Moser B, Springer TA (1996) Sequential regulation of alpha 4 beta 1 and alpha 5 beta 1 integrin avidity by CC chemokines in monocytes: implications for transendothelial chemotaxis. J Cell Biol 134:1063–1073

    Article  PubMed  CAS  Google Scholar 

  41. Postigo AA, Sanchez-Mateos P, Lazarovits AI, Sanchez-Madrid F, de Landazuri MO (1993) Alpha 4 beta 7 integrin mediates B cell binding to fibronectin and vascular cell adhesion molecule-1. Expression and function of alpha 4 integrins on human B lymphocytes. J Immunol 151:2471–2483

    PubMed  CAS  Google Scholar 

  42. Dejana E, Bazzoni G, Lampugnani MG (1999) Vascular endothelial (VE)-cadherin: only an intercellular glue? Exp Cell Res 252:13–19

    Article  PubMed  CAS  Google Scholar 

  43. Breviario F, Caveda L, Corada M et al (1995) Functional properties of human vascular endothelial cadherin (7B4/cadherin-5), an endothelium-specific cadherin. Arterioscler Thromb Vasc Biol 15:1229–1239

    PubMed  CAS  Google Scholar 

  44. Hordijk PL, Anthony E, Mul FP et al (1999) Vascular–endothelial–cadherin modulates endothelial monolayer permeability. J Cell Sci 112(Pt 12):1915–1923

    PubMed  CAS  Google Scholar 

  45. Corada M, Mariotti M, Thurston G et al (1999) Vascular endothelial–cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci USA 96:9815–9820

    Article  PubMed  CAS  Google Scholar 

  46. Corada M, Liao F, Lindgren M et al (2001) Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. Blood 97:1679–1684

    Article  PubMed  CAS  Google Scholar 

  47. Tanaka Y, Albelda SM, Horgan KJ et al (1992) CD31 expressed on distinctive T cell subsets is a preferential amplifier of beta 1 integrin-mediated adhesion. J Exp Med 176:245–253

    Article  PubMed  CAS  Google Scholar 

  48. Piali L, Hammel P, Uherek C et al (1995) CD31/PECAM-1 is a ligand for alpha v beta 3 integrin involved in adhesion of leukocytes to endothelium. J Cell Biol 130:451–460

    Article  PubMed  CAS  Google Scholar 

  49. Buckley CD, Doyonnas R, Newton JP et al (1996) Identification of alpha v beta 3 as a heterotypic ligand for CD31/PECAM-1. J Cell Sci 109(Pt 2):437–445

    PubMed  CAS  Google Scholar 

  50. Dunon D, Piali L, Imhof BA (1996) To stick or not to stick: the new leukocyte homing paradigm. Curr Opin Cell Biol 8:714–723

    Article  PubMed  CAS  Google Scholar 

  51. Liao F, Huynh HK, Eiroa A et al (1995) Migration of monocytes across endothelium and passage through extracellular matrix involve separate molecular domains of PECAM-1. J Exp Med 182:1337–1343

    Article  PubMed  CAS  Google Scholar 

  52. Muller WA, Weigl SA, Deng X, Phillips DM (1993) PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med 178:449–460

    Article  PubMed  CAS  Google Scholar 

  53. Muller WA (1995) The role of PECAM-1 (CD31) in leukocyte emigration: studies in vitro and in vivo. J Leukoc Biol 57:523–528

    PubMed  CAS  Google Scholar 

  54. Graesser D, Solowiej A, Bruckner M et al (2002) Altered vascular permeability and early onset of experimental autoimmune encephalomyelitis in PECAM-1–deficient mice. J Clin Invest 109:383–392

    PubMed  CAS  Google Scholar 

  55. Wakelin MW, Sanz MJ, Dewar A et al (1996) An anti-platelet-endothelial cell adhesion molecule-1 antibody inhibits leukocyte extravasation from mesenteric microvessels in vivo by blocking the passage through the basement membrane. J Exp Med 184:229–239

    Article  PubMed  CAS  Google Scholar 

  56. Duncan GS, Andrew DP, Takimoto H et al (1999) Genetic evidence for functional redundancy of platelet/endothelial cell adhesion molecule-1 (PECAM-1): CD31-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions. J Immunol 162:3022–3030

    PubMed  CAS  Google Scholar 

  57. Ruppert M, Aigner S, Hubbe M, Yagita H, Altevogt P (1995) The L1 adhesion molecule is a cellular ligand for VLA-5. J Cell Biol 131:1881–1891

    Article  PubMed  CAS  Google Scholar 

  58. Montgomery AM, Becker JC, Siu CH et al (1996) Human neural cell adhesion molecule L1 and rat homologue NILE are ligands for integrin alpha v beta 3. J Cell Biol 132:475–485

    Article  PubMed  CAS  Google Scholar 

  59. Imhof BA, Dunon D (1995) Leukocyte migration and adhesion. Adv Immunol 58:345–416

    Article  PubMed  CAS  Google Scholar 

  60. Lloyd AR, Oppenheim JJ, Kelvin DJ, Taub DD (1996) Chemokines regulate T cell adherence to recombinant adhesion molecules and extracellular matrix proteins. J Immunol 156:932–938

    PubMed  CAS  Google Scholar 

  61. May MJ, Ager A (1992) ICAM-1-independent lymphocyte transmigration across high endothelium: differential up-regulation by interferon gamma, tumor necrosis factor-alpha and interleukin 1 beta. Eur J Immunol 22:219–226

    Article  PubMed  CAS  Google Scholar 

  62. Kunkel EJ, Dunne JL, Ley K (2000) Leukocyte arrest during cytokine-dependent inflammation in vivo. J Immunol 164:3301–3308

    PubMed  CAS  Google Scholar 

  63. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572

    Article  PubMed  CAS  Google Scholar 

  64. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    Article  PubMed  CAS  Google Scholar 

  65. Naumov GN, Wilson SM, MacDonald IC et al (1999) Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J Cell Sci 112(Pt 12):1835–1842

    PubMed  CAS  Google Scholar 

  66. Steinbauer M, Guba M, Cernaianu G et al (2003) GFP-transfected tumor cells are useful in examining early metastasis in vivo, but immune reaction precludes long-term tumor development studies in immunocompetent mice. Clin Exp Metastasis 20:135–141

    Article  PubMed  CAS  Google Scholar 

  67. Guba M, Bosserhoff AK, Steinbauer M et al (2000) Overexpression of melanoma inhibitory activity (MIA) enhances extravasation and metastasis of A-mel 3 melanoma cells in vivo. Br J Cancer 83:1216–1222

    Article  PubMed  CAS  Google Scholar 

  68. Luzzi KJ, MacDonald IC, Schmidt EE et al (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153:865–873

    PubMed  CAS  Google Scholar 

  69. Barbera-Guillem E, Smith I, Weiss L (1992) Cancer-cell traffic in the liver. I. Growth kinetics of cancer cells after portal-vein delivery. Int J Cancer 52:974–977

    Article  PubMed  CAS  Google Scholar 

  70. Qiu H, Orr FW, Jensen D et al (2003) Arrest of B16 melanoma cells in the mouse pulmonary microcirculation induces endothelial nitric oxide synthase-dependent nitric oxide release that is cytotoxic to the tumor cells. Am J Pathol 162:403–412

    PubMed  CAS  Google Scholar 

  71. Wang HH, McIntosh AR, Hasinoff BB et al (2000) B16 melanoma cell arrest in the mouse liver induces nitric oxide release and sinusoidal cytotoxicity: a natural hepatic defense against metastasis. Cancer Res 60:5862–5869

    PubMed  CAS  Google Scholar 

  72. Weis S, Cui J, Barnes L, Cheresh D (2004) Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol 167:223–229

    Article  PubMed  CAS  Google Scholar 

  73. Orr FW, Wang HH, Lafrenie RM, Scherbarth S, Nance DM (2000) Interactions between cancer cells and the endothelium in metastasis. J Pathol 190:310–329

    Article  PubMed  CAS  Google Scholar 

  74. Scherbarth S, Orr FW (1997) Intravital videomicroscopic evidence for regulation of metastasis by the hepatic microvasculature: effects of interleukin-1alpha on metastasis and the location of B16F1 melanoma cell arrest. Cancer Res 57:4105–4110

    PubMed  CAS  Google Scholar 

  75. Schluter K, Gassmann P, Enns A et al (2006) Organ-specific metastatic tumor cell adhesion and extravasation of colon carcinoma cells with different metastatic potential. Am J Pathol 169:1064–1073

    Article  PubMed  CAS  Google Scholar 

  76. Haier J, Korb T, Hotz B, Spiegel HU, Senninger N (2003) An intravital model to monitor steps of metastatic tumor cell adhesion within the hepatic microcirculation. J Gastrointest Surg 7:507–514

    Article  PubMed  Google Scholar 

  77. Cooper CR, McLean L, Walsh M et al (2000) Preferential adhesion of prostate cancer cells to bone is mediated by binding to bone marrow endothelial cells as compared to extracellular matrix components in vitro. Clin Cancer Res 6:4839–4847

    PubMed  CAS  Google Scholar 

  78. Haq M, Goltzman D, Tremblay G, Brodt P (1992) Rat prostate adenocarcinoma cells disseminate to bone and adhere preferentially to bone marrow-derived endothelial cells. Cancer Res 52:4613–4619

    PubMed  CAS  Google Scholar 

  79. Lehr JE, Pienta KJ (1998) Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. J Natl Cancer Inst 90:118–123

    Article  PubMed  CAS  Google Scholar 

  80. Scott LJ, Clarke NW, George NJ et al (2001) Interactions of human prostatic epithelial cells with bone marrow endothelium: binding and invasion. Br J Cancer 84:1417–1423

    Article  PubMed  CAS  Google Scholar 

  81. Glinsky VV, Glinsky GV, Rittenhouse-Olson K et al (2001) The role of Thomsen–Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res 61:4851–4857

    PubMed  CAS  Google Scholar 

  82. Glinskii OV, Huxley VH, Glinsky GV et al (2005) Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs. Neoplasia 7:522–527

    Article  PubMed  CAS  Google Scholar 

  83. Wayner EA, Garcia-Pardo A, Humphries MJ, McDonald JA, Carter WG (1989) Identification and characterization of the T lymphocyte adhesion receptor for an alternative cell attachment domain (CS-1) in plasma fibronectin. J Cell Biol 109:1321–1330

    Article  PubMed  CAS  Google Scholar 

  84. Guan JL, Hynes RO (1990) Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor alpha 4 beta 1. Cell 60:53–61

    Article  PubMed  CAS  Google Scholar 

  85. Miyake K, Medina K, Ishihara K et al (1991) A VCAM-like adhesion molecule on murine bone marrow stromal cells mediates binding of lymphocyte precursors in culture. J Cell Biol 114:557–565

    Article  PubMed  CAS  Google Scholar 

  86. Matsuura N, Puzon-McLaughlin W, Irie A et al (1996) Induction of experimental bone metastasis in mice by transfection of integrin alpha 4 beta 1 into tumor cells. Am J Pathol 148:55–61

    PubMed  CAS  Google Scholar 

  87. Huhtala P, Humphries MJ, McCarthy JB et al (1995) Cooperative signaling by alpha 5 beta 1 and alpha 4 beta 1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. J Cell Biol 129:867–879

    Article  PubMed  CAS  Google Scholar 

  88. Zeng ZZ, Jia Y, Hahn NJ et al (2006) Role of focal adhesion kinase and phosphatidylinositol 3′-kinase in integrin fibronectin receptor-mediated, matrix metalloproteinase-1-dependent invasion by metastatic prostate cancer cells. Cancer Res 66:8091–8099

    Article  PubMed  CAS  Google Scholar 

  89. Jia Y, Zeng ZZ, Markwart SM et al (2004) Integrin fibronectin receptors in matrix metalloproteinase-1-dependent invasion by breast cancer and mammary epithelial cells. Cancer Res 64:8674–8681

    Article  PubMed  CAS  Google Scholar 

  90. Ignatoski KM, Maehama T, Markwart SM et al (2000) ERBB-2 overexpression confers PI 3′ kinase-dependent invasion capacity on human mammary epithelial cells. Br J Cancer 82:666–674

    Article  PubMed  CAS  Google Scholar 

  91. Rokhlin OW, Cohen MB (1995) Expression of cellular adhesion molecules on human prostate tumor cell lines. Prostate 26:205–212

    Article  PubMed  CAS  Google Scholar 

  92. Lawrence MB, Springer TA (1991) Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65:859–873

    Article  PubMed  CAS  Google Scholar 

  93. Krause T, Turner GA (1999) Are selectins involved in metastasis? Clin Exp Metastasis 17:183–192

    Article  PubMed  CAS  Google Scholar 

  94. Giavazzi R, Foppolo M, Dossi R, Remuzzi A (1993) Rolling and adhesion of human tumor cells on vascular endothelium under physiological flow conditions. J Clin Invest 92:3038–3044

    Article  PubMed  CAS  Google Scholar 

  95. Okada T, Okuno H, Mitsui Y (1994) A novel in vitro assay system for transendothelial tumor cell invasion: significance of E-selectin and alpha 3 integrin in the transendothelial invasion by HT1080 fibrosarcoma cells. Clin Exp Metastasis 12:305–314

    Article  PubMed  CAS  Google Scholar 

  96. Laferriere J, Houle F, Huot J (2004) Adhesion of HT-29 colon carcinoma cells to endothelial cells requires sequential events involving E-selectin and integrin beta4. Clin Exp Metastasis 21:257–264

    Article  PubMed  CAS  Google Scholar 

  97. Tozeren A, Kleinman HK, Grant DS et al (1995) E-selectin-mediated dynamic interactions of breast- and colon-cancer cells with endothelial-cell monolayers. Int J Cancer 60:426–431

    Article  PubMed  CAS  Google Scholar 

  98. Dimitroff CJ, Lechpammer M, Long-Woodward D, Kutok JL (2004) Rolling of human bone-metastatic prostate tumor cells on human bone marrow endothelium under shear flow is mediated by E-selectin. Cancer Res 64:5261–5269

    Article  PubMed  CAS  Google Scholar 

  99. Iwai K, Ishikura H, Kaji M et al (1993) Importance of E-selectin (ELAM-1) and sialyl Lewis(a) in the adhesion of pancreatic carcinoma cells to activated endothelium. Int J Cancer 54:972–977

    Article  PubMed  CAS  Google Scholar 

  100. Khaldoyanidi SK, Glinsky VV, Sikora L et al (2003) MDA-MB-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by Thomsen–Friedenreich antigen-galectin-3 interactions. J Biol Chem 278:4127–4134

    Article  PubMed  CAS  Google Scholar 

  101. Tomlinson J, Wang JL, Barsky SH et al (2000) Human colon cancer cells express multiple glycoprotein ligands for E-selectin. Int J Oncol 16:347–353

    PubMed  CAS  Google Scholar 

  102. Khatib AM, Auguste P, Fallavollita L et al (2005) Characterization of the host proinflammatory response to tumor cells during the initial stages of liver metastasis. Am J Pathol 167:749–759

    PubMed  CAS  Google Scholar 

  103. Auguste P, Fallavollita L, Wang N et al (2007) The host inflammatory response promotes liver metastasis by increasing tumor cell arrest and extravasation. Am J Pathol 170:1781–1792

    Article  PubMed  Google Scholar 

  104. Kruskal JB, Azouz A, Korideck H et al (2007) Hepatic colorectal cancer metastases: imaging initial steps of formation in mice. Radiology 243:703–711

    Article  PubMed  Google Scholar 

  105. Satoh M, Numahata K, Kawamura S, Saito S, Orikasa S (1998) Lack of selectin-dependent adhesion in prostate cancer cells expressing sialyl Le(x). Int J Urol 5:86–91

    Article  PubMed  CAS  Google Scholar 

  106. Cooper CR, Sikes RA, Nicholson BE et al (2004) Cancer cells homing to bone: the significance of chemotaxis and cell adhesion. Cancer Treat Res 118:291–309

    PubMed  CAS  Google Scholar 

  107. Mattila P, Majuri ML, Renkonen R (1992) VLA-4 integrin on sarcoma cell lines recognizes endothelial VCAM-1. Differential regulation of the VLA-4 avidity on various sarcoma cell lines. Int J Cancer 52:918–923

    Article  PubMed  CAS  Google Scholar 

  108. Steinbach F, Tanabe K, Alexander J et al (1996) The influence of cytokines on the adhesion of renal cancer cells to endothelium. J Urol 155:743–748

    Article  PubMed  CAS  Google Scholar 

  109. Taichman DB, Cybulsky MI, Djaffar I et al (1991) Tumor cell surface alpha 4 beta 1 integrin mediates adhesion to vascular endothelium: demonstration of an interaction with the N-terminal domains of INCAM-110/VCAM-1. Cell Regul 2:347–355

    PubMed  CAS  Google Scholar 

  110. Tomita Y, Saito T, Saito K et al (1995) Possible significance of VLA-4 (alpha 4 beta 1) for hematogenous metastasis of renal-cell cancer. Int J Cancer 60:753–758

    Article  PubMed  CAS  Google Scholar 

  111. Klemke M, Weschenfelder T, Konstandin MH, Samstag Y (2007) High affinity interaction of integrin alpha4beta1 (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) enhances migration of human melanoma cells across activated endothelial cell layers. J Cell Physiol 212:368–374

    Article  PubMed  CAS  Google Scholar 

  112. Wang HS, Hung Y, Su CH et al (2005) CD44 cross-linking induces integrin-mediated adhesion and transendothelial migration in breast cancer cell line by up-regulation of LFA-1 (alpha L beta2) and VLA-4 (alpha4beta1). Exp Cell Res 304:116–126

    Article  PubMed  CAS  Google Scholar 

  113. Fujisaki T, Tanaka Y, Fujii K et al (1999) CD44 stimulation induces integrin-mediated adhesion of colon cancer cell lines to endothelial cells by up-regulation of integrins and c-Met and activation of integrins. Cancer Res 59:4427–4434

    PubMed  CAS  Google Scholar 

  114. Mine S, Fujisaki T, Kawahara C et al (2003) Hepatocyte growth factor enhances adhesion of breast cancer cells to endothelial cells in vitro through up-regulation of CD44. Exp Cell Res 288:189–197

    Article  PubMed  CAS  Google Scholar 

  115. Okado T, Hawley RG (1995) Adhesion molecules involved in the binding of murine myeloma cells to bone marrow stromal elements. Int J Cancer 63:823–830

    Article  PubMed  CAS  Google Scholar 

  116. Draffin JE, McFarlane S, Hill A, Johnston PG, Waugh DJ (2004) CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cells. Cancer Res 64:5702–5711

    Article  PubMed  CAS  Google Scholar 

  117. Ruiz P, Dunon D, Sonnenberg A, Imhof BA (1993) Suppression of mouse melanoma metastasis by EA-1, a monoclonal antibody specific for alpha 6 integrins. Cell Adhes Commun 1:67–81

    Article  PubMed  CAS  Google Scholar 

  118. Hangan D, Morris VL, Boeters L et al (1997) An epitope on VLA-6 (alpha6beta1) integrin involved in migration but not adhesion is required for extravasation of murine melanoma B16F1 cells in liver. Cancer Res 57:3812–3817

    PubMed  CAS  Google Scholar 

  119. Voura EB, Ramjeesingh RA, Montgomery AM, Siu CH (2001) Involvement of integrin alpha(v)beta(3) and cell adhesion molecule L1 in transendothelial migration of melanoma cells. Mol Biol Cell 12:2699–2710

    PubMed  CAS  Google Scholar 

  120. Voura EB, Chen N, Siu CH (2000) Platelet–endothelial cell adhesion molecule-1 (CD31) redistributes from the endothelial junction and is not required for the transendothelial migration of melanoma cells. Clin Exp Metastasis 18:527–532

    Article  PubMed  CAS  Google Scholar 

  121. Wang X, Ferreira AM, Shao Q, Laird DW, Sandig M (2005) Beta3 integrins facilitate matrix interactions during transendothelial migration of PC3 prostate tumor cells. Prostate 63:65–80

    Article  PubMed  CAS  Google Scholar 

  122. Earley S, Plopper GE (2006) Disruption of focal adhesion kinase slows transendothelial migration of AU-565 breast cancer cells. Biochem Biophys Res Commun 350:405–412

    Article  PubMed  CAS  Google Scholar 

  123. Abdel-Ghany M, Cheng HC, Elble RC et al (2003) The interacting binding domains of the beta(4) integrin and calcium-activated chloride channels (CLCAs) in metastasis. J Biol Chem 278:49406–49416

    Article  PubMed  CAS  Google Scholar 

  124. Rahn JJ, Chow JW, Horne GJ et al (2005) MUC1 mediates transendothelial migration in vitro by ligating endothelial cell ICAM-1. Clin Exp Metastasis 22:475–483

    Article  PubMed  CAS  Google Scholar 

  125. Yu LG, Andrews N, Zhao Q et al (2007) Galectin-3 interaction with Thomsen–Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. J Biol Chem 282:773–781

    Article  PubMed  CAS  Google Scholar 

  126. Lewalle JM, Bajou K, Desreux J et al (1997) Alteration of interendothelial adherens junctions following tumor cell–endothelial cell interaction in vitro. Exp Cell Res 237:347–356

    Article  PubMed  CAS  Google Scholar 

  127. Sandig M, Voura EB, Kalnins VI, Siu CH (1997) Role of cadherins in the transendothelial migration of melanoma cells in culture. Cell Motil Cytoskeleton 38:351–364

    Article  PubMed  CAS  Google Scholar 

  128. Qi J, Chen N, Wang J, Siu CH (2005) Transendothelial migration of melanoma cells involves N-cadherin-mediated adhesion and activation of the beta-catenin signaling pathway. Mol Biol Cell 16:4386–4397

    Article  PubMed  CAS  Google Scholar 

  129. Iiizumi M, Mohinta S, Bandyopadhyay S, Watabe K (2007) Tumor–endothelial cell interactions: therapeutic potential. Microvasc Res (in press)

  130. Bandyopadhyay S, Zhan R, Chaudhuri A et al (2006) Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression. Nat Med 12:933–938

    Article  PubMed  CAS  Google Scholar 

  131. Rinker-Schaeffer CW, O’Keefe JP, Welch DR, Theodorescu D (2006) Metastasis suppressor proteins: discovery, molecular mechanisms, and clinical application. Clin Cancer Res 12:3882–3889

    Article  PubMed  CAS  Google Scholar 

  132. Sikes RA, Nicholson BE, Koeneman KS et al (2004) Cellular interactions in the tropism of prostate cancer to bone. Int J Cancer 110:497–503

    Article  PubMed  CAS  Google Scholar 

  133. Akedo H, Shinkai K, Mukai M, Komatsu K (1989) Potentiation and inhibition of tumor cell invasion by host cells and mediators. Invasion Metastasis 9:134–148

    PubMed  CAS  Google Scholar 

  134. Kramer RH, Nicolson GL (1979) Interactions of tumor cells with vascular endothelial cell monolayers: a model for metastatic invasion. Proc Natl Acad Sci USA 76:5704–5708

    Article  PubMed  CAS  Google Scholar 

  135. Al-Mehdi AB, Tozawa K, Fisher AB et al (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med 6:100–102

    Article  PubMed  CAS  Google Scholar 

  136. Heyder C, Gloria-Maercker E, Entschladen F et al (2002) Realtime visualization of tumor cell/endothelial cell interactions during transmigration across the endothelial barrier. J Cancer Res Clin Oncol 128:533–538

    Article  PubMed  CAS  Google Scholar 

  137. Li YH, Zhu C (1999) A modified Boyden chamber assay for tumor cell transendothelial migration in vitro. Clin Exp Metastasis 17:423–429

    Article  PubMed  CAS  Google Scholar 

  138. Roetger A, Merschjann A, Dittmar T et al (1998) Selection of potentially metastatic subpopulations expressing c-erbB-2 from breast cancer tissue by use of an extravasation model. Am J Pathol 153:1797–1806

    PubMed  CAS  Google Scholar 

  139. Voura EB, Sandig M, Kalnins VI, Siu C (1998) Cell shape changes and cytoskeleton reorganization during transendothelial migration of human melanoma cells. Cell Tissue Res 293:375–387

    Article  PubMed  CAS  Google Scholar 

  140. Chambers AF, Schmidt EE, MacDonald IC, Morris VL, Groom AC (1992) Early steps in hematogenous metastasis of B16F1 melanoma cells in chick embryos studied by high-resolution intravital videomicroscopy. J Natl Cancer Inst 84:797–803

    Article  PubMed  CAS  Google Scholar 

  141. Chambers AF, MacDonald IC, Schmidt EE et al (1995) Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev 14:279–301

    Article  PubMed  CAS  Google Scholar 

  142. Voura EB, Jaiswal JK, Mattoussi H, Simon SM (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10:993–998

    Article  PubMed  CAS  Google Scholar 

  143. Yamauchi K, Yang M, Jiang P et al (2005) Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration. Cancer Res 65:4246–4252

    Article  PubMed  CAS  Google Scholar 

  144. Dong C, Slattery MJ, Rank BM, You J (2002) In vitro characterization and micromechanics of tumor cell chemotactic protrusion, locomotion, and extravasation. Ann Biomed Eng 30:344–355

    Article  PubMed  Google Scholar 

  145. Chotard-Ghodsnia R, Haddad O, Leyrat A et al (2007) Morphological analysis of tumor cell/endothelial cell interactions under shear flow. J Biomech 40:335–344

    Article  PubMed  Google Scholar 

  146. Brandt B, Heyder C, Gloria-Maercker E et al (2005) 3D-extravasation model—selection of highly motile and metastatic cancer cells. Semin Cancer Biol 15:387–395

    Article  PubMed  Google Scholar 

  147. Sandig M, Negrou E, Rogers KA (1997) Changes in the distribution of LFA-1, catenins, and F-actin during transendothelial migration of monocytes in culture. J Cell Sci 110(Pt 22):2807–2818

    PubMed  CAS  Google Scholar 

  148. Pawlowski NA, Kaplan G, Abraham E, Cohn ZA (1988) The selective binding and transmigration of monocytes through the junctional complexes of human endothelium. J Exp Med 168:1865–1882

    Article  PubMed  CAS  Google Scholar 

  149. Engelhardt B, Wolburg H (2004) Mini-review: transendothelial migration of leukocytes: through the front door or around the side of the house? Eur J Immunol 34:2955–2963

    Article  PubMed  CAS  Google Scholar 

  150. Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348 (Pt 2):241–255

    Article  PubMed  CAS  Google Scholar 

  151. Braga VM, Del Maschio A, Machesky L, Dejana E (1999) Regulation of cadherin function by Rho and Rac: modulation by junction maturation and cellular context. Mol Biol Cell 10:9–22

    PubMed  CAS  Google Scholar 

  152. Braga VM (2002) Cell–cell adhesion and signalling. Curr Opin Cell Biol 14:546–556

    Article  PubMed  CAS  Google Scholar 

  153. Sahai E, Marshall CJ (2002) ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nat Cell Biol 4:408–415

    Article  PubMed  CAS  Google Scholar 

  154. Su WH, Chen HI, Jen CJ (2002) Differential movements of VE-cadherin and PECAM-1 during transmigration of polymorphonuclear leukocytes through human umbilical vein endothelium. Blood 100:3597–3603

    Article  PubMed  CAS  Google Scholar 

  155. Luscinskas FW, Ma S, Nusrat A, Parkos CA, Shaw SK (2002) The role of endothelial cell lateral junctions during leukocyte trafficking. Immunol Rev 186:57–67

    Article  PubMed  CAS  Google Scholar 

  156. Shaw SK, Bamba PS, Perkins BN, Luscinskas FW (2001) Real-time imaging of vascular endothelial–cadherin during leukocyte transmigration across endothelium. J Immunol 167:2323–2330

    PubMed  CAS  Google Scholar 

  157. Durieu-Trautmann O, Chaverot N, Cazaubon S, Strosberg AD, Couraud PO (1994) Intercellular adhesion molecule 1 activation induces tyrosine phosphorylation of the cytoskeleton-associated protein cortactin in brain microvessel endothelial cells. J Biol Chem 269:12536–12540

    PubMed  CAS  Google Scholar 

  158. Lyck R, Reiss Y, Gerwin N et al (2003) T-cell interaction with ICAM-1/ICAM-2 double-deficient brain endothelium in vitro: the cytoplasmic tail of endothelial ICAM-1 is necessary for transendothelial migration of T cells. Blood 102:3675–3683

    Article  PubMed  CAS  Google Scholar 

  159. Thompson PW, Randi AM, Ridley AJ (2002) Intercellular adhesion molecule (ICAM)-1, but not ICAM-2, activates RhoA and stimulates c-fos and rhoA transcription in endothelial cells. J Immunol 169:1007–1013

    PubMed  CAS  Google Scholar 

  160. Etienne S, Adamson P, Greenwood J et al (1998) ICAM-1 signaling pathways associated with Rho activation in microvascular brain endothelial cells. J Immunol 161:5755–5761

    PubMed  CAS  Google Scholar 

  161. Takahashi K, Sasaki T, Mammoto A et al (1997) Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J Biol Chem 272:23371–23375

    Article  PubMed  CAS  Google Scholar 

  162. Barreiro O, Yanez-Mo M, Serrador JM et al (2002) Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 157:1233–1245

    Article  PubMed  CAS  Google Scholar 

  163. Heiska L, Alfthan K, Gronholm M et al (1998) Association of ezrin with intercellular adhesion molecule-1 and -2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4, 5-bisphosphate. J Biol Chem 273:21893–21900

    Article  PubMed  CAS  Google Scholar 

  164. Millan J, Ridley AJ (2005) Rho GTPases and leucocyte-induced endothelial remodelling. Biochem J 385:329–337

    Article  PubMed  CAS  Google Scholar 

  165. Bos JL (2005) Linking Rap to cell adhesion. Curr Opin Cell Biol 17:123–128

    Article  PubMed  CAS  Google Scholar 

  166. Alevriadou BR (2003) CAMs and Rho small GTPases: gatekeepers for leukocyte transendothelial migration. Focus on “VCAM-1-mediated Rac signaling controls endothelial cell–cell contacts and leukocyte transmigration”. Am J Physiol Cell Physiol 285:C250–C252

    PubMed  CAS  Google Scholar 

  167. van Wetering S, van den Berk N, van Buul JD et al (2003) VCAM-1-mediated Rac signaling controls endothelial cell–cell contacts and leukocyte transmigration. Am J Physiol Cell Physiol 285:C343–C352

    PubMed  Google Scholar 

  168. Brakebusch C, Fassler R (2003) The integrin–actin connection, an eternal love affair. Embo J 22:2324–2333

    Article  PubMed  CAS  Google Scholar 

  169. Fernandez M, Sanchez-Franco F, Palacios N, Sanchez I, Cacicedo L (2005) IGF-I and vasoactive intestinal peptide (VIP) regulate cAMP-response element-binding protein (CREB)-dependent transcription via the mitogen-activated protein kinase (MAPK) pathway in pituitary cells: requirement of Rap1. J Mol Endocrinol 34:699–712

    Article  PubMed  CAS  Google Scholar 

  170. McLeod SJ, Li AH, Lee RL, Burgess AE, Gold MR (2002) The Rap GTPases regulate B cell migration toward the chemokine stromal cell-derived factor-1 (CXCL12): potential role for Rap2 in promoting B cell migration. J Immunol 169:1365–1371

    PubMed  CAS  Google Scholar 

  171. Kooistra MR, Corada M, Dejana E, Bos JL (2005) Epac1 regulates integrity of endothelial cell junctions through VE-cadherin. FEBS Lett 579:4966–4972

    Article  PubMed  CAS  Google Scholar 

  172. Wittchen ES, Worthylake RA, Kelly P et al (2005) Rap1 GTPase inhibits leukocyte transmigration by promoting endothelial barrier function. J Biol Chem 280:11675–11682

    Article  PubMed  CAS  Google Scholar 

  173. Li B, Zhao WD, Tan ZM et al (2006) Involvement of Rho/ROCK signalling in small cell lung cancer migration through human brain microvascular endothelial cells. FEBS Lett 580:4252–4260

    Article  PubMed  CAS  Google Scholar 

  174. Kusama T, Mukai M, Tatsuta M, Nakamura H, Inoue M (2006) Inhibition of transendothelial migration and invasion of human breast cancer cells by preventing geranylgeranylation of Rho. Int J Oncol 29:217–223

    PubMed  CAS  Google Scholar 

  175. Voura EB, Sandig M, Siu CH (1998) Cell–cell interactions during transendothelial migration of tumor cells. Microsc Res Tech 43:265–275

    Article  PubMed  CAS  Google Scholar 

  176. Paku S, Dome B, Toth R, Timar J (2000) Organ-specificity of the extravasation process: an ultrastructural study. Clin Exp Metastasis 18:481–492

    Article  PubMed  CAS  Google Scholar 

  177. Nicolson GL (1988) Organ specificity of tumor metastasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7:143–188

    Article  PubMed  CAS  Google Scholar 

  178. Uchide K, Sakon M, Ariyoshi H et al (2007) Cancer cells cause vascular endothelial cell (vEC) retraction via 12(S)HETE secretion; the possible role of cancer cell derived microparticle. Ann Surg Oncol 14:862–868

    Article  PubMed  Google Scholar 

  179. Honn KV, Tang DG, Grossi IM et al (1994) Enhanced endothelial cell retraction mediated by 12(S)-HETE: a proposed mechanism for the role of platelets in tumor cell metastasis. Exp Cell Res 210:1–9

    Article  PubMed  CAS  Google Scholar 

  180. el-Sabban ME, Pauli BU (1991) Cytoplasmic dye transfer between metastatic tumor cells and vascular endothelium. J Cell Biol 115:1375–1382

    Article  PubMed  CAS  Google Scholar 

  181. el-Sabban ME, Pauli BU (1994) Adhesion-mediated gap junctional communication between lung-metastatatic cancer cells and endothelium. Invasion Metastasis 14:164–176

    PubMed  CAS  Google Scholar 

  182. Tang DG, Honn KV (1994) Adhesion molecules and tumor metastasis: an update. Invasion Metastasis 14:109–122

    PubMed  CAS  Google Scholar 

  183. Tang DG, Grossi IM, Chen YQ, Diglio CA, Honn KV (1993) 12(S)-HETE promotes tumor–cell adhesion by increasing surface expression of alpha V beta 3 integrins on endothelial cells. Int J Cancer 54:102–111

    Article  PubMed  CAS  Google Scholar 

  184. Tang DG, Diglio CA, Honn KV (1993) 12(S)-HETE-induced microvascular endothelial cell retraction results from PKC-dependent rearrangement of cytoskeletal elements and alpha V beta 3 integrins. Prostaglandins 45:249–267

    Article  PubMed  CAS  Google Scholar 

  185. Grunstein J, Roberts WG, Mathieu-Costello O, Hanahan D, Johnson RS (1999) Tumor-derived expression of vascular endothelial growth factor is a critical factor in tumor expansion and vascular function. Cancer Res 59:1592–1598

    PubMed  CAS  Google Scholar 

  186. Gleadle JM, Ebert BL, Firth JD, Ratcliffe PJ (1995) Regulation of angiogenic growth factor expression by hypoxia, transition metals, and chelating agents. Am J Physiol 268:C1362–1368

    PubMed  CAS  Google Scholar 

  187. Fischer S, Clauss M, Wiesnet M et al (1999) Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am J Physiol 276:C812–C820

    PubMed  CAS  Google Scholar 

  188. Mayhan WG (1999) VEGF increases permeability of the blood–brain barrier via a nitric oxide synthase/cGMP-dependent pathway. Am J Physiol 276:C1148–C1153

    PubMed  CAS  Google Scholar 

  189. Wilmes LJ, Pallavicini MG, Fleming LM et al (2007) AG-013736, a novel inhibitor of VEGF receptor tyrosine kinases, inhibits breast cancer growth and decreases vascular permeability as detected by dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging 25:319–327

    Article  PubMed  CAS  Google Scholar 

  190. Senger DR, Perruzzi CA, Feder J, Dvorak HF (1986) A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res 46:5629–5632

    PubMed  CAS  Google Scholar 

  191. Senger DR, Van de Water L, Brown LF et al (1993) Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev 12:303–324

    Article  PubMed  CAS  Google Scholar 

  192. Fukumura D, Xavier R, Sugiura T et al (1998) Tumor induction of VEGF promoter activity in stromal cells. Cell 94:715–725

    Article  PubMed  CAS  Google Scholar 

  193. Shijubo N, Uede T, Kon S et al (1999) Vascular endothelial growth factor and osteopontin in stage I lung adenocarcinoma. Am J Respir Crit Care Med 160:1269–1273

    PubMed  CAS  Google Scholar 

  194. Lee TH, Avraham HK, Jiang S, Avraham S (2003) Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem 278:5277–5284

    Article  PubMed  CAS  Google Scholar 

  195. Lee BC, Lee TH, Avraham S, Avraham HK (2004) Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol Cancer Res 2:327–338

    PubMed  CAS  Google Scholar 

  196. Kebers F, Lewalle JM, Desreux J et al (1998) Induction of endothelial cell apoptosis by solid tumor cells. Exp Cell Res 240:197–205

    Article  PubMed  CAS  Google Scholar 

  197. Heyder C, Gloria-Maercker E, Hatzmann W, Zaenker KS, Dittmar T (2006) Visualization of tumor cell extravasation. Contrib Microbiol 13:200–208

    Article  PubMed  Google Scholar 

  198. Vlodavsky I, Ariav Y, Atzmon R, Fuks Z (1982) Tumor cell attachment to the vascular endothelium and subsequent degradation of the subendothelial extracellular matrix. Exp Cell Res 140:149–159

    Article  PubMed  CAS  Google Scholar 

  199. Timpl R, Fujiwara S, Dziadek M et al (1984) Laminin, proteoglycan, nidogen and collagen IV: structural models and molecular interactions. Ciba Found Symp 108:25–43

    PubMed  CAS  Google Scholar 

  200. Kleinman HK, McGarvey ML, Liotta LA et al (1982) Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry 21:6188–6193

    Article  PubMed  CAS  Google Scholar 

  201. Kramer RH, Gonzalez R, Nicolson GL (1980) Metastatic tumor cells adhere preferentially to the extracellular matrix underlying vascular endothelial cells. Int J Cancer 26:639–645

    Article  PubMed  CAS  Google Scholar 

  202. Martin GR, Kleinman HK, Terranova VP, Ledbetter S, Hassell JR (1984) The regulation of basement membrane formation and cell–matrix interactions by defined supramolecular complexes. Ciba Found Symp 108:197–212

    PubMed  CAS  Google Scholar 

  203. Kramer RH, Fuh GM, Karasek MA (1985) Type IV collagen synthesis by cultured human microvascular endothelial cells and its deposition into the subendothelial basement membrane. Biochemistry 24:7423–7430

    Article  PubMed  CAS  Google Scholar 

  204. Kramer RH, Bensch KG, Wong J (1986) Invasion of reconstituted basement membrane matrix by metastatic human tumor cells. Cancer Res 46:1980–1989

    PubMed  CAS  Google Scholar 

  205. Vlodavsky I, Fuks Z, Ishai-Michaeli R et al (1991) Extracellular matrix-resident basic fibroblast growth factor: implication for the control of angiogenesis. J Cell Biochem 45:167–176

    Article  PubMed  CAS  Google Scholar 

  206. Kramer RH, Vogel KG, Nicolson GL (1982) Solubilization and degradation of subendothelial matrix glycoproteins and proteoglycans by metastatic tumor cells. J Biol Chem 257:2678–2686

    PubMed  CAS  Google Scholar 

  207. Heisel M, Laug WE, Jones PA (1983) Inhibition by bovine endothelial cells of degradation by HT-1080 fibrosarcoma cells of extracellular matrix proteins. J Natl Cancer Inst 71:1183–1187

    PubMed  CAS  Google Scholar 

  208. Nakajima M, Irimura T, Nicolson GL (1988) Heparanases and tumor metastasis. J Cell Biochem 36:157–167

    Article  PubMed  CAS  Google Scholar 

  209. Nakajima M, Irimura T, Di Ferrante D, Di Ferrante N, Nicolson GL (1983) Heparan sulfate degradation: relation to tumor invasive and metastatic properties of mouse B16 melanoma sublines. Science 220:611–613

    Article  PubMed  CAS  Google Scholar 

  210. Tuck AB, Chambers AF, Allan AL (2007) Osteopontin overexpression in breast cancer: knowledge gained and possible implications for clinical management. J Cell Biochem (in press)

  211. Banerji S, Wright AJ, Noble M et al (2007) Structures of the Cd44-hyaluronan complex provide insight into a fundamental carbohydrate–protein interaction. Nat Struct Mol Biol 14:234–239

    Article  PubMed  CAS  Google Scholar 

  212. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  PubMed  CAS  Google Scholar 

  213. Heino J, Massague J (1989) Transforming growth factor-beta switches the pattern of integrins expressed in MG-63 human osteosarcoma cells and causes a selective loss of cell adhesion to laminin. J Biol Chem 264:21806–21811

    PubMed  CAS  Google Scholar 

  214. Kakinuma T, Hwang ST (2006) Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol 79:639–651

    Article  PubMed  CAS  Google Scholar 

  215. Kulbe H, Levinson NR, Balkwill F, Wilson JL (2004) The chemokine network in cancer-much more than directing cell movement. Int J Dev Biol 48:489–651

    Article  PubMed  CAS  Google Scholar 

  216. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  CAS  Google Scholar 

  217. Kawakami-Kimura N, Narita T, Ohmori K et al (1997) Involvement of hepatocyte growth factor in increased integrin expression on HepG2 cells triggered by adhesion to endothelial cells. Br J Cancer 75:47–53

    PubMed  CAS  Google Scholar 

  218. Ponomaryov T, Peled A, Petit I et al (2000) Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 106:1331–1339

    Article  PubMed  CAS  Google Scholar 

  219. Imai K, Kobayashi M, Wang J et al (1999) Selective secretion of chemoattractants for haemopoietic progenitor cells by bone marrow endothelial cells: a possible role in homing of haemopoietic progenitor cells to bone marrow. Br J Haematol 106:905–911

    Article  PubMed  CAS  Google Scholar 

  220. Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550

    Article  PubMed  CAS  Google Scholar 

  221. Geminder H, Sagi-Assif O, Goldberg L et al (2001) A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol 167:4747–4757

    PubMed  CAS  Google Scholar 

  222. Mohle R, Failenschmid C, Bautz F, Kanz L (1999) Overexpression of the chemokine receptor CXCR4 in B cell chronic lymphocytic leukemia is associated with increased functional response to stromal cell-derived factor-1 (SDF-1). Leukemia 13:1954–1959

    Article  PubMed  CAS  Google Scholar 

  223. Taichman RS, Cooper C, Keller ET et al (2002) Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 62:1832–1837

    PubMed  CAS  Google Scholar 

  224. Kukreja P, Abdel-Mageed AB, Mondal D, Liu K, Agrawal KC (2005) Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1alpha (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway-dependent NF-kappaB activation. Cancer Res 65:9891–9898

    Article  PubMed  CAS  Google Scholar 

  225. Marchesi F, Monti P, Leone BE et al (2004) Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res 64:8420–8427

    Article  PubMed  CAS  Google Scholar 

  226. Parmo-Cabanas M, Bartolome RA, Wright N et al (2004) Integrin alpha4beta1 involvement in stromal cell-derived factor-1alpha-promoted myeloma cell transendothelial migration and adhesion: role of cAMP and the actin cytoskeleton in adhesion. Exp Cell Res 294:571–580

    Article  PubMed  CAS  Google Scholar 

  227. Choo MK, Sakurai H, Koizumi K, Saiki I (2005) Stimulation of cultured colon 26 cells with TNF-alpha promotes lung metastasis through the extracellular signal-regulated kinase pathway. Cancer Lett 230:47–56

    Article  PubMed  CAS  Google Scholar 

  228. Wu W, Yamaura T, Murakami K et al (1999) Involvement of TNF-alpha in enhancement of invasion and metastasis of colon 26-L5 carcinoma cells in mice by social isolation stress. Oncol Res 11:461–469

    PubMed  CAS  Google Scholar 

  229. Vanderkerken K, Vande Broek I, Eizirik DL et al (2002) Monocyte chemoattractant protein-1 (MCP-1), secreted by bone marrow endothelial cells, induces chemoattraction of 5T multiple myeloma cells. Clin Exp Metastasis 19:87–90

    Article  PubMed  CAS  Google Scholar 

  230. Bradley JR, Pober JS (1996) Prolonged cytokine exposure causes a dynamic redistribution of endothelial cell adhesion molecules to intercellular junctions. Lab Invest 75:463–472

    PubMed  CAS  Google Scholar 

  231. Sheski FD, Natarajan V, Pottratz ST (1999) Tumor necrosis factor-alpha stimulates attachment of small cell lung carcinoma to endothelial cells. J Lab Clin Med 133:265–273

    Article  PubMed  CAS  Google Scholar 

  232. Boehme MW, Waldherr R, Kist A et al (1996) Kinetics of soluble TNF-receptors and soluble adhesion molecules ICAM-1, E-selectin and VCAM-1 under systemic rhTNF alpha therapy. Eur J Clin Invest 26:404–410

    Article  PubMed  CAS  Google Scholar 

  233. Lafrenie RM, Podor TJ, Buchanan MR, Orr FW (1992) Up-regulated biosynthesis and expression of endothelial cell vitronectin receptor enhances cancer cell adhesion. Cancer Res 52:2202–2208

    PubMed  CAS  Google Scholar 

  234. Kaji M, Ishikura H, Kishimoto T et al (1995) E-selectin expression induced by pancreas-carcinoma-derived interleukin-1 alpha results in enhanced adhesion of pancreas–carcinoma cells to endothelial cells. Int J Cancer 60:712–717

    Article  PubMed  CAS  Google Scholar 

  235. Kurtzman SH, Anderson KH, Wang Y et al (1999) Cytokines in human breast cancer: IL-1alpha and IL-1beta expression. Oncol Rep 6:65–70

    PubMed  CAS  Google Scholar 

  236. Narita T, Kawakami-Kimura N, Matsuura N, Hosono J, Kannagi R (1995) Corticosteroids and medroxyprogesterone acetate inhibit the induction of E-selectin on the vascular endothelium by MDA-MB-231 breast cancer cells. Anticancer Res 15:2523–2527

    PubMed  CAS  Google Scholar 

  237. Khatib AM, Kontogiannea M, Fallavollita L et al (1999) Rapid induction of cytokine and E-selectin expression in the liver in response to metastatic tumor cells. Cancer Res 59:1356–1361

    PubMed  CAS  Google Scholar 

  238. Leek RD, Harris AL (2002) Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia 7:177–189

    Article  PubMed  Google Scholar 

  239. al-Sarireh B, Eremin O (2000) Tumour-associated macrophages (TAMS): disordered function, immune suppression and progressive tumour growth. J R Coll Surg Edinb 45:1–16

    PubMed  CAS  Google Scholar 

  240. Gangopadhyay A, Lazure DA, Thomas P (1998) Adhesion of colorectal carcinoma cells to the endothelium is mediated by cytokines from CEA stimulated Kupffer cells. Clin Exp Metastasis 16:703–712

    Article  PubMed  CAS  Google Scholar 

  241. Aarons CB, Bajenova O, Andrews C et al (2007) Carcinoembryonic antigen-stimulated THP-1 macrophages activate endothelial cells and increase cell–cell adhesion of colorectal cancer cells. Clin Exp Metastasis 24:201–209

    Article  PubMed  Google Scholar 

  242. Hauschka PV, Mavrakos AE, Iafrati MD, Doleman SE, Klagsbrun M (1986) Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-Sepharose. J Biol Chem 261:12665–12674

    PubMed  CAS  Google Scholar 

  243. Mundy GR, Boyce B, Hughes D et al (1995) The effects of cytokines and growth factors on osteoblastic cells. Bone 17:71S–75S

    Article  PubMed  CAS  Google Scholar 

  244. Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520

    Article  PubMed  CAS  Google Scholar 

  245. Kaminska B, Wesolowska A, Danilkiewicz M (2005) TGF beta signalling and its role in tumour pathogenesis. Acta Biochim Pol 52:329–337

    PubMed  CAS  Google Scholar 

  246. Siegel PM, Shu W, Cardiff RD, Muller WJ, Massague J (2003) Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci USA 100:8430–8435

    Article  PubMed  CAS  Google Scholar 

  247. Wright N, de Lera TL, Garcia-Moruja C et al (2003) Transforming growth factor-beta1 down-regulates expression of chemokine stromal cell-derived factor-1: functional consequences in cell migration and adhesion. Blood 102:1978–1984

    Article  PubMed  CAS  Google Scholar 

  248. Smith WB, Noack L, Khew-Goodall Y et al (1996) Transforming growth factor-beta 1 inhibits the production of IL-8 and the transmigration of neutrophils through activated endothelium. J Immunol 157:360–368

    PubMed  CAS  Google Scholar 

  249. Cooper CR, Bhatia JK, Muenchen HJ et al (2002) The regulation of prostate cancer cell adhesion to human bone marrow endothelial cell monolayers by androgen dihydrotestosterone and cytokines. Clin Exp Metastasis 19:25–33

    Article  PubMed  CAS  Google Scholar 

  250. Aeed PA, Nakajima M, Welch DR (1988) The role of polymorphonuclear leukocytes (PMN) on the growth and metastatic potential of 13762NF mammary adenocarcinoma cells. Int J Cancer 42:748–759

    Article  PubMed  CAS  Google Scholar 

  251. Welch DR, Schissel DJ, Howrey RP, Aeed PA (1989) Tumor-elicited polymorphonuclear cells, in contrast to “normal” circulating polymorphonuclear cells, stimulate invasive and metastatic potentials of rat mammary adenocarcinoma cells. Proc Natl Acad Sci USA 86:5859–5863

    Article  PubMed  CAS  Google Scholar 

  252. Liang S, Slattery MJ, Dong C (2005) Shear stress and shear rate differentially affect the multi-step process of leukocyte-facilitated melanoma adhesion. Exp Cell Res 310:282–292

    Article  PubMed  CAS  Google Scholar 

  253. Wu QD, Wang JH, Condron C, Bouchier-Hayes D, Redmond HP (2001) Human neutrophils facilitate tumor cell transendothelial migration. Am J Physiol Cell Physiol 280:C814–C822

    PubMed  CAS  Google Scholar 

  254. Dong C, Slattery MJ, Liang S, Peng HH (2005) Melanoma cell extravasation under flow conditions is modulated by leukocytes and endogenously produced interleukin 8. Mol Cell Biomech 2:145–159

    PubMed  Google Scholar 

  255. Slattery MJ, Liang S, Dong C (2005) Distinct role of hydrodynamic shear in leukocyte-facilitated tumor cell extravasation. Am J Physiol Cell Physiol 288:C831–C839

    Article  PubMed  CAS  Google Scholar 

  256. Offner FA, Schiefer J, Wirtz HC et al (1996) Tumour–cell–endothelial interactions: free radicals are mediators of melanoma-induced endothelial cell damage. Virchows Arch 428:99–106

    Article  PubMed  CAS  Google Scholar 

  257. Paduch R, Walter-Croneck A, Zdzisinska B, Szuster-Ciesielska A, Kandefer-Szerszen M (2005) Role of reactive oxygen species (ROS), metalloproteinase-2 (MMP-2) and interleukin-6 (IL-6) in direct interactions between tumour cell spheroids and endothelial cell monolayer. Cell Biol Int 29:497–505

    Article  PubMed  CAS  Google Scholar 

  258. Jessup JM, Laguinge L, Lin S et al (2004) Carcinoembryonic antigen induction of IL-10 and IL-6 inhibits hepatic ischemic/reperfusion injury to colorectal carcinoma cells. Int J Cancer 111:332–337

    Article  PubMed  CAS  Google Scholar 

  259. Mastro AM, Gay CV, Welch DR (2003) The skeleton as a unique environment for breast cancer cells. Clin Exp Metastasis 20:275–284

    Article  PubMed  CAS  Google Scholar 

  260. Crissman JD, Hatfield J, Schaldenbrand M, Sloane BF, Honn KV (1985) Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Lab Invest 53:470–478

    PubMed  CAS  Google Scholar 

  261. Crissman JD, Hatfield JS, Menter DG, Sloane B, Honn KV (1988) Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Res 48:4065–4072

    PubMed  CAS  Google Scholar 

  262. Bombeli T, Schwartz BR, Harlan JM (1998) Adhesion of activated platelets to endothelial cells: evidence for a GPIIbIIIa-dependent bridging mechanism and novel roles for endothelial intercellular adhesion molecule 1 (ICAM-1), alphavbeta3 integrin, and GPIbalpha. J Exp Med 187:329–339

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr. Robert A. Sikes for helpful discussion, suggestions and editorial assistance for this manuscript. Also, we are grateful to the editorial contributions provided by Dr. Mary C. Farach-Carson. Dr. Cooper and Ms. Miles were supported by a DoD hypothesis development award PC050554, as well as the NIH-K22 Career-Transition Award, 5K22CA971117-3 (CRC). Dr. van Golen is supported by a start-up package provided by the University of Delaware. All authors are, in part, supported by the Center for Translational Cancer Research provided by the state of Delaware.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlton R. Cooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miles, F.L., Pruitt, F.L., van Golen, K.L. et al. Stepping out of the flow: capillary extravasation in cancer metastasis. Clin Exp Metastasis 25, 305–324 (2008). https://doi.org/10.1007/s10585-007-9098-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-007-9098-2

Keywords

Navigation