Skip to main content
Log in

Oxidative Stress in Homocystinuria Due to Cystathionine ß-Synthase Deficiency: Findings in Patients and in Animal Models

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Homocystinuria is an inborn error of amino acid metabolism caused by deficiency of cystathionine ß-synthase (CBS) activity, biochemically characterized by homocysteine (Hcy) and methionine (Met) accumulation in biological fluids and high urinary excretion of homocystine. Clinical manifestations include thinning and lengthening of long bones, osteoporosis, dislocation of the ocular lens, thromboembolism, and mental retardation. Although the pathophysiology of this disease is poorly known, the present review summarizes the available experimental findings obtained from patients and animal models indicating that oxidative stress may contribute to the pathogenesis of homocystinuria. In this scenario, several studies have shown that enzymatic and non-enzymatic antioxidant defenses are decreased in individuals affected by this disease. Furthermore, markers of lipid, protein, and DNA oxidative damage have been reported to be increased in blood, brain, liver, and skeletal muscle in animal models studied and in homocystinuric patients, probably as a result of increased free radical generation. On the other hand, in vitro and in vivo studies have shown that Hcy induces reactive species formation in brain, so that this major accumulating metabolite may underlie the oxidative damage observed in the animal model and human condition. Taken together, it may be presumed that the disruption of redox homeostasis may contribute to the tissue damage found in homocystinuria. Therefore, it is proposed that the use of appropriate antioxidants may represent a novel adjuvant therapy for patients affected by this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

4-HNE:

4-hydroxyalkenal

AChE:

Acetylcholinesterase

ALT:

Alanine aminotransferase

ApoA-1:

Apolipoprotein A1

AST:

Aspartate aminotransferase

BuChE:

Butyrylcholinesterase

CAT:

Catalase

CBS:

Cystathionine ß-synthase

DCF:

2′,7′-dichlorofluorescein

EC-SOD:

Extracellular superoxide dismutase

G6PD:

Glucose 6-phosphate dehydrogenase

GPx:

Glutathione peroxidase

GRed:

Glutathione reductase

GSH:

Glutathione

GST:

Glutathione S-transferase

H2O2 :

Hydrogen peroxide

Hcy:

Homocysteine

Hhcy:

Hyperhomocysteinemia

IEM:

Inborn errors of metabolism

IFN-γ:

Interferon-γ

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

MDA:

Malondialdehyde

Met:

Methionine

MTHFR:

Methylenetetrahydrofolate reductase

O2 :

Superoxide anion

PKA:

Protein kinase A

PON1:

Paraoxonase

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TAR:

Total antioxidant reactivity

TAS:

Total antioxidant status

TBARS:

Thiobarbituric acid reactive substances

TRAP:

Total radical-trapping antioxidant potential

TUNEL:

Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate biotin nick end labeling

Vitamin B6:

Pyridoxine

References

  • Andria G, Fowler B, Sebastio G (2006) Disorders of sulfur amino acid metabolism. In: Fernandes J, Saudubray JM, Van Den Berghe G, Walter JH (eds) Inborn metabolic diseases, diagnosis and treatment, 4th edn. Springer Medizin Verlag, Würzburg, pp 273–282

    Chapter  Google Scholar 

  • da Cunha AA, Ferreira AGK, da Cunha MJ, Pederzolli CD, Becker DL, Coelho JG et al (2011) Chronic hyperhomocysteinemia induces oxidative damage in the rat lung. Mol Cell Biochem 358(1–2):153–160

    Article  CAS  PubMed  Google Scholar 

  • Davì G, Di Minno G, Coppola A, Andria G, Cerbone AM, Madonna P et al (2001) Oxidative stress and platelet activation in homozygous homocystinuria. Circulation 104(10):1124–1128

    Article  PubMed  Google Scholar 

  • Devlin AM, Lentz SR (2006) ApoA-I: a missing link between homocysteine and lipid metabolism? Circ Res 98(4):431–433

    Article  CAS  PubMed  Google Scholar 

  • Erecinska M, Silver IA (1994) Ions and energy in mammalian brain. Prog Neurobiol 43(1):37–71

    Article  CAS  PubMed  Google Scholar 

  • Faraci FM, Lentz SR (2004) Hyperhomocysteinemia, oxidative stress, and cerebral vascular dysfunction. Stroke 35(2):345–347

    Article  PubMed  Google Scholar 

  • Halliwell B (1991) Drug antioxidant effects. A basis for drug selection? Drugs 42:569–605

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford, pp 187–267

    Google Scholar 

  • Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamelet J, Seltzer V, Petit E, Noll C, Andreau K, Delabar JM, Janel N (2008) Cystathionine beta synthase deficiency induces catalase-mediated hydrogen peroxide detoxification in mice liver. Biochim Biophys Acta 1782(7–8):482–488

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo Mazzei D, Martín Rodriguez S, Pérez Moltó H, Ruíz Izquierdo J, Baeza I (2014) A forgotten lethal psychosis: a case report. Eur Child Adolesc Psychiatry 23:235–238

    Article  PubMed  Google Scholar 

  • Kolling J, Scherer EBS, Siebert C, Marques EP, dos Santos TM, Wyse ATS (2014) Creatine prevents the imbalance of redox homeostasis caused by homocysteine in skeletal muscle of rats. Gene 545(1):72–79

    Article  CAS  PubMed  Google Scholar 

  • Lees GJ (1993) Contributory mechanisms in the causation of neurodegenerative disorders. Neuroscience 54(2):287–322

    Article  CAS  PubMed  Google Scholar 

  • Lentz SR (1998) Mechanisms of thrombosis in hyperhomocysteinemia. Curr Opin Hematol 5(5):343–349

    Article  CAS  PubMed  Google Scholar 

  • Liao D, Tan H, Hui R, Li Z, Jiang X, Gaubatz J et al (2006) Hyperhomocysteinemia decreases circulating highdensity lipoprotein by inhibiting apolipoprotein A-I protein synthesis and enhancing HDL cholesterol clearance. Circ Res 99(6):598–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machado FR, Ferreira AGK, da Cunha AA, Tagliari B, Mussulini BHM, Wofchuk S et al (2011) Homocysteine alters glutamate uptake and Na + , K + -ATPase activity and oxidative status in rats hippocampus: protection by vitamin C. Metab Brain Dis 26(1):61–67

    Article  CAS  PubMed  Google Scholar 

  • Matté C, Mackedanz V, Stefanello FM, Scherer EB, Andreazza AC, Zanotto C et al (2009a) Chronic hyperhomocysteinemia alters antioxidant defenses and increases DNA damage in brain and blood of rats: protective effect of folic acid. Neurochem Int 54(1):7–13

    Article  PubMed  Google Scholar 

  • Matté C, Stefanello FM, Mackedanz V, Pederzolli CD, Lamers ML, Dutra-Filho CS et al (2009b) Homocysteine induces oxidative stress, inflammatory infiltration, fibrosis and reduces glycogen/glycoprotein content in liver of rats. Int J Dev Neurosci 27(4):337–344

    Article  PubMed  Google Scholar 

  • Mikael LG, Genest J Jr, Rozen R (2006) Elevated homocysteine reduces apolipoprotein A-I expression in hyperhomocysteinemic mice and in males with coronary artery disease. Circ Res 98(4):564–571

    Article  CAS  Google Scholar 

  • Mudd SH, Skovby F, Levy HL, Pettigrew KD, Wilcken B, Pyeritz RE et al (1985) The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet 37(1):1–31

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mudd SH, Levy HL, Kraus JP (2001) Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease, 8th edn. McGraw-Hill, New York, pp 2007–2056

    Google Scholar 

  • Prody CA, Zevin-Sonkin D, Gnatt A, Golberg O, Soreq H (1987) Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues. Proc Natl Acad Sci 87(11):3555–3559

    Article  Google Scholar 

  • Pullin CH, Bonham JR, McDowell IF, Lee PJ, Powers HJ, Wilson JF et al (2002) Vitamins C therapy ameliorates vascular endothelial dysfunction in treated patients with homocystinuria. J Inherit Metab Dis 25(2):107–118

    Article  CAS  PubMed  Google Scholar 

  • Rao TN, Radhakrishna K, Mohana Rao TS, Guruprasad P, Ahmed K (2008) Homocystinuria due to cystathionine beta synthase deficiency. Indian J Dermatol Venereol Leprol 74(4):375–378

    Article  PubMed  Google Scholar 

  • Reis EA, Zugno AI, Franzon R, Tagliari B, Matté C, Lammers ML et al (2002) Pretreatment with vitamins E and C prevent the impairment of memory caused by homocysteine administration in rats. Metab Brain Dis 17(3):211–217

    Article  CAS  PubMed  Google Scholar 

  • Robert K, Nehmé J, Bourdon E, Pivert G, Friguet B, Delcayre C et al (2005) Cystathionine β synthase deficiency promotes oxidative stress, fibrosis and steatosis in mice liver. Gastroenterology 128(5):1405–1415

    Article  CAS  PubMed  Google Scholar 

  • Schulpis KH, Kalimeris K, Bakogiannis C, Tsakiris T, Tsakiris S (2006) The Effect of in vitro homocystinuria on the suckling rat hippocampal acetylcholinesterase. Metab Brain Dis 21(1):21–28

    Article  CAS  PubMed  Google Scholar 

  • Skovby F (2003) Disorders of transulfuration. In: Blau N, Duran M, Blaskovics ME, Gibson KM (eds) Physician’s guide to the laboratory diagnosis of metabolic diseases. Springer-Verlag, Berlin, pp 243–260

    Chapter  Google Scholar 

  • Škovierová H, Vidomanová E, Mahmood S, Sopková J, Drgová A, Červeňová T, Halašová E, Lehotský J (2016) The Molecular and Cellular Effect of Homocysteine Metabolism Imbalance on Human Health. Int J Mol Sci 17(10):1733

    Article  PubMed Central  Google Scholar 

  • Smith CM, Marks AD, Lieberman MA (2005) Marks’ Basic Medical Biochemistry: A Clinical Approach, 2nd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Stefanello FM, Franzon R, Wannmacher CM, Wajner M, Wyse AT (2003) In vitro homocysteine inhibits platelet Na + , K + -ATPase and serum butyrylcholinesterase activities of young rats. Metab Brain Dis 18(4):273–280

    Article  CAS  PubMed  Google Scholar 

  • Stefanello FM, Franzon R, Tagliari B, Wannmacher CMD, Wajner M, Wyse ATS (2005) Reduction of butyrylcholinesterase activity in rat serum subjected to hyperhomocysteinemia. Metab Brain Dis 20(2):97–103

    Article  CAS  PubMed  Google Scholar 

  • Streck EL, Zugno AI, Tagliari B, Franzon R, Wannmacher CMD, Wajner M et al (2001) Inhibition of rat brain Na + , K + -ATPase activity induced by homocysteine is probably mediated by oxidative stress. Neurochem Res 26(11):1195–1200

    Article  CAS  PubMed  Google Scholar 

  • Streck EL, Matté C, Vieira PS, Rombaldi F, Wannmacher CMD, Wajner M et al (2002a) Reduction of Na(+), K(+)-ATPase activity in hippocampus of rats subjected to chemically induced hyperhomocysteinemia. Neurochem Res 27(12):1593–1598

    Article  CAS  PubMed  Google Scholar 

  • Streck EL, Zugno AI, Tagliari B, Wannmacher CMD, Wajner M, Wyse ATS (2002b) Inhibition of Na + , K + -ATPase activity by the metabolites accumulating in homocystinuria. Metab Brain Dis 17(2):83–91

    Article  CAS  PubMed  Google Scholar 

  • Streck EL, Vieira PS, Wannmacher CMD, Dutra-Filho CS, Wajner M, Wyse ATS (2003) In vitro effect of homocysteine on some parameters of oxidative stress in rat hippocampus. Metab Brain Dis 18(2):147–154

    Article  CAS  PubMed  Google Scholar 

  • Vanzin CS, Biancini GB, Sitta A, Wayhs CAY, Pereira IN, Rockenbach F et al (2011) Experimental evidence of oxidative stress in plasma of homocystinuric patients: a possible role for homocysteine. Mol Genet Metab 104(1–2):112–117

    Article  CAS  PubMed  Google Scholar 

  • Vanzin CS, Manfredini V, Marinho AE, Biancini GB, Ribas GS, Deon M et al (2014) Homocysteine contribution to DNA damage in cystathionine β-synthase-deficient patients. Gene 539(2):270–274

    Article  CAS  PubMed  Google Scholar 

  • Vanzin CS, Mescka CP, Donida B, Hammerschimidt TG, Ribas GS, Kolling J et al (2015) Lipid, oxidative and inflammatory profile and alterations in the enzymes paraoxonase and butyrylcholinesterase in plasma of patients with homocystinuria due CBS deficiency: the vitamin B12 and folic acid importance. Cell Mol Neurobiol 35(6):899–911

    Article  CAS  PubMed  Google Scholar 

  • Vilaseca-Buscà MA, Artuch-Iriberri R, Colomé-Mallolas C, Brandi-Tarrau N, Campistol J, Pineda-Marfà M et al (2002) Alteraciones del sistema antioxidante en errores congénitos del metabolismo intermediario. Rev Neurol 34(11):1021–1024

    PubMed  Google Scholar 

  • Wajner M, Latini A, Wyse AT, Dutra-Filho CS (2004) The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 27:427–448

    Article  CAS  PubMed  Google Scholar 

  • Wilcken DEL, Wilcken B (1997) The natural history of vascular disease in homocystinuria and effects of treatment. J Inherit Metab Dis 20(2):295–300

    Article  CAS  PubMed  Google Scholar 

  • Wilcken DEL, Wang XL, Adachi T, Hara H, Duarte N, Green K et al (2000) Relationship between homocysteine and superoxide dismutase in homocystinuria: possible relevance to cardiovascular risk. Arterioscler Thromb Vasc Biol 20(5):1199–1202

    Article  CAS  PubMed  Google Scholar 

  • Wyse AT, Zugno AI, Streck EL, Matté C, Calcagnotto T, Wannmacher CM, Wajner M (2002) Inhibition of Na (+), K(+)-ATPase activity in hippocampus of rats to a cute administration of homocysteine is prevented by vitamin E and C treatment. Neurochem Res 27(12):1685–1689

    Article  CAS  PubMed  Google Scholar 

  • Yap S, Rushe H, Howard PM, Naughten ER (2001) The intellectual abilities of early-treated individuals with pyridoxine-nonresponsive homocystinuria due to cystathionine beta-synthase deficiency. J Inherit Metab Dis 24:437–447

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Fang P, Jiang X, Nelson J, Moore JK, Kruger WD, Berretta RM, Houser SR, Yang X, Wang H (2012) Severe hyperhomocysteinemia promotes bone marrow-derived and resident inflammatory monocyte differentiation and atherosclerosis in LDLr/CBS-Deficient Mice. Circ Res 111(1):37–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Brazilian Foundation Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Comissão de Aperfeiçoamento de Pessoal do Nível Superior (CAPES), and Fundo de Incentivo à Pesquisa e Eventos (FIPE/HCPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Regla Vargas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faverzani, J.L., Hammerschmidt, T.G., Sitta, A. et al. Oxidative Stress in Homocystinuria Due to Cystathionine ß-Synthase Deficiency: Findings in Patients and in Animal Models. Cell Mol Neurobiol 37, 1477–1485 (2017). https://doi.org/10.1007/s10571-017-0478-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-017-0478-0

Keywords

Navigation