Skip to main content
Log in

Chronic hyperhomocysteinemia induces oxidative damage in the rat lung

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Tissue accumulation of homocysteine occurs in classical homocystinuria, a metabolic disease characterized biochemically by cystathionine β-synthase deficiency. Vascular manifestations such as myocardial infarction, cerebral thrombosis, hepatic steatosis, and pulmonary embolism are common in this disease and poorly understood. In this study, we investigated the effect of chronic hyperhomocysteinemia on some parameters of oxidative stress (thiobarbituric acid-reactive substances, protein carbonyl content, 2′,7′-dichlorofluorescein fluorescence assay, and total radical-trapping antioxidant potent) and activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) in the rat lung. Reduced glutathione content and glucose 6-phosphate dehydrogenase activity, as well as nitrite levels, were also evaluated. Wistar rats received daily subcutaneous injections of Hcy (0.3–0.6 μmol/g body weight) from the 6th to the 28th days-of-age and the control group received saline. One and 12 h after the last injection, rats were killed and the lungs collected. Hyperhomocysteinemia increased lipid peroxidation and oxidative damage to protein, and disrupted antioxidant defenses (enzymatic and non-enzymatic) in the lung of rats, characterizing a reliable oxidative stress. In contrast, this amino acid did not alter nitrite levels. Our findings showed a consistent profile of oxidative stress in the lung of rats, elicited by homocysteine, which could explain, at least in part, the mechanisms involved in the lung damage that is present in some homocystinuric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Diaz-Arrastia R (2000) Homocysteine and neurologic disease. Arch Neurol 57:1422–1427

    Article  PubMed  CAS  Google Scholar 

  2. Andersson A, Ankerst J, Lindgren A, Larsson K, Hultberg B (2001) Hyperhomocysteinemia and changed plasma thiol redox status in chronic obstructive pulmonary disease. Clin Chem Lab Med 39:229–233

    Article  PubMed  CAS  Google Scholar 

  3. Mattson MP, Kruman II, Duan W (2002) Folic acid and homocysteine in age-related disease. Ageing Res Rev 1:95–111

    Article  PubMed  CAS  Google Scholar 

  4. Bottiglieri T (2005) Homocysteine and folate metabolism in depression. Prog Neuropsychopharmacol Biol Psychiatry 29:1103–1112

    Article  PubMed  CAS  Google Scholar 

  5. Obeid R, McCaddon A, Herrmann W (2007) The role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric diseases. Clin Chem Lab Med 45:1590–1606

    Article  PubMed  CAS  Google Scholar 

  6. Herrmann W, Lorenzl S, Obeid R (2007) Review of the role of hyperhomocysteinemia and B-vitamin deficiency in neurological and psychiatric disorders—current evidence and preliminary recommendations. Fortschr Neurol Psychiatr 75:515–527

    Article  PubMed  CAS  Google Scholar 

  7. Mudd SH, Levy HL, Skovby F (2001) Disorders of transsulfuration. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 1279–1327

    Google Scholar 

  8. Klastin G, Conn HO (1993) Hepatic lesions in disorders of protein and amino acid metabolism. Oxford University Press, New York

    Google Scholar 

  9. van der Berg M, van der Knapp MS, Boers GH, Stehouwer CD, Rauwerda JA, Valk J (1995) Hyperhomocysteinemia; with reference to its neuroradiological aspects. Neuroradiology 37:403–411

    Article  PubMed  Google Scholar 

  10. Welch GN, Loscalzo J (1998) Homocysteine and atherothrombosis. N Engl J Med 338:1042–1050

    Article  PubMed  CAS  Google Scholar 

  11. Kim WK, Pae YS (1996) Involvement of N-methyl-d-aspartate receptor and free radical in homocysteine-mediated toxicity on rat cerebellar granule cells in culture. Neurosci Lett 216:117–120

    PubMed  CAS  Google Scholar 

  12. Zhang F, Slungaard A, Vercellotti GM, Ladecola C (1998) Superoxide-dependent cerebrovascular effects of homocysteine. Am J Physiol 274:R1704–R1711

    PubMed  CAS  Google Scholar 

  13. Ho PI, Ashline D, Dhitavat S, Ortiz D, Collins SC, Shea TB, Rogers E (2003) Folate deprivation induces neurodegeneration: roles of oxidative stress and increased homocysteine. Neurobiol Dis 14:32–42

    Article  PubMed  CAS  Google Scholar 

  14. Jara-Prado A, Ortega-Vazquez A, Martinez-Ruano L, Rios C, Santamaria A (2003) Homocysteine-induced brain lipid peroxidation: effects of NMDA receptor blockade, antioxidant treatment, and nitric oxide synthase inhibition. Neurotox Res 5:237–243

    Article  PubMed  Google Scholar 

  15. Dayal S, Arning E, Bottiglieri T, Boger RH, Sigmund CD, Faraci FM, Lentz SR (2004) Cerebral vascular dysfunction mediated by superoxide in hyperhomocysteinemic mice. Stroke 35:1957–1962

    Article  PubMed  CAS  Google Scholar 

  16. Faraci FM, Lentz SR (2004) Hyperhomocysteinemia, oxidative stress, and cerebral vascular dysfunction. Stroke 35:345–347

    Article  PubMed  Google Scholar 

  17. Tyagi N, Sedoris KC, Steed M, Ovechkin AV, Moshal KS, Tyagi SC (2005) Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol 289:H2649–H2656

    Article  PubMed  CAS  Google Scholar 

  18. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  PubMed  CAS  Google Scholar 

  19. Zhu X, Smith MA, Honda K, Aliev G, Moreira PI, Nunomura A, Casadesus G, Harris PL, Siedlak SL, Perry G (2007) Vascular oxidative stress in Alzheimer disease. J Neurol Sci 257:240–246

    Article  PubMed  CAS  Google Scholar 

  20. Shi H, Liu KJ (2007) Cerebral tissue oxygenation and oxidative brain injury during ischemia and reperfusion. Front Biosci 12:1318–1328

    Article  PubMed  CAS  Google Scholar 

  21. Muhl D (2008) Changes in oxidative stress and hemostatic parameters in the course of thrombolytic therapy of pulmonary embolism. Orv Hetil 149:935–948

    Article  PubMed  Google Scholar 

  22. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  PubMed  CAS  Google Scholar 

  23. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255

    Article  PubMed  CAS  Google Scholar 

  24. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, New York, pp 79–185

    Google Scholar 

  25. Wyse AT, Zugno AI, Streck EL, Matté C, Calcagnotto T, Wannmacher CM, Wajner M (2002) Inhibition of Na+, K+-ATPase activity in hippocampus of rats subjected to acute administration of homocysteine is prevented by vitamins E and C treatment. Neurochem Res 27:1685–1689

    Article  PubMed  CAS  Google Scholar 

  26. Streck EL, Vieira PS, Wannmacher CM, Dutra-Filho C, Wajner M, Wyse AT (2003) In vitro effect of homocysteine on some parameters of oxidative stress in rat hippocampus. Metab Brain Dis 18:147–154

    Article  PubMed  CAS  Google Scholar 

  27. Matté C, Monteiro SC, Calcagnotto T, Bavaresco CS, Netto CA, Wyse AT (2004) In vivo and in vitro effects of homocysteine on Na+, K+-ATPase activity in parietal, prefrontal and cingulate cortex of young rats. Int J Dev Neurosci 22:185–190

    Article  PubMed  Google Scholar 

  28. Matté C, Scherer EB, Stefanello FM, Barschak AG, Vargas CR, Netto CA, Wyse AT (2007) Concurrent folate treatment prevents Na+, K+-ATPase activity inhibition and memory impairments caused by chronic hyperhomocysteinemia during rat development. Int J Dev Neurosci 25:545–552

    Article  PubMed  Google Scholar 

  29. Matté C, Stefanello FM, Mackedanz V, Pederzolli CD, Lamers ML, Dutra-Filho CS, dos Santos MF, Wyse AT (2009) Homocysteine induces oxidative stress, inflammatory infiltration, fibrosis and reduces glycogen/glycoprotein content in liver of rats. Int J Dev Neurosci 27:337–344

    Article  PubMed  Google Scholar 

  30. Streck EL, Matté C, Vieira PS, Rombaldi F, Wannmacher CM, Wajner M, Wyse AT (2002) Reduction of Na+, K+-ATPase activity in hippocampus of rats subjected to chemically induced hyperhomocysteinemia. Neurochem Res 27:1593–1598

    Article  PubMed  CAS  Google Scholar 

  31. Llesuy SF, Milei J, Molina H, Boveris A, Milei S (1985) Comparison of lipid peroxidation and myocardial damage induced by adriamycin and 4′-epiadriamycin in mice. Tumori 71:241–249

    PubMed  CAS  Google Scholar 

  32. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  33. Stadtman ER (1990) Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med 9:315–325

    Article  PubMed  CAS  Google Scholar 

  34. Stadtman ER, Levine RL (2003) Free-radical mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218

    Article  PubMed  CAS  Google Scholar 

  35. Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363

    Article  PubMed  CAS  Google Scholar 

  36. LeBel CP, Ali SF, McKee M, Bondy SC (1990) Organometal-induced increases in oxygen reactive species: the potential of 2′,7′-dichlorofluorescein diacetate as an index of neurotoxic damage. Toxicol Appl Pharmacol 104:17–24

    Article  PubMed  CAS  Google Scholar 

  37. Lissi E, Pascual C, Del Castillo MD (1992) Luminol luminescence induced by 2,2′-azo-bis-(2-amidinopropane) thermolysis. Free Radic Res Commun 17:299–311

    Article  PubMed  CAS  Google Scholar 

  38. Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266

    Article  PubMed  CAS  Google Scholar 

  39. Marklund SL (1985) Pyrogallol autoxidation. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 243–247

    Google Scholar 

  40. Aebi H (1984) Catalase, in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  41. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    Article  PubMed  CAS  Google Scholar 

  42. Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352

    PubMed  CAS  Google Scholar 

  43. Leong SF, Clark JB (1984) Regional enzyme development in rat brain. Enzymes associated with glucose utilization. Biochem J 218:131–138

    PubMed  CAS  Google Scholar 

  44. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite and [15N]nitrate in biological fluids. Anal Biochem 126:131–138

    Article  PubMed  CAS  Google Scholar 

  45. Lowry OH, Rosebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  46. Clarke R, Daly L, Robinson K (1999) Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med 324:1149–1155

    Article  Google Scholar 

  47. Mattson MP, Haberman F (2003) Folate and homocysteine metabolism: therapeutic targets in cardiovascular and neurodegenerative disorders. Curr Med Chem 10:1923–1929

    Article  PubMed  CAS  Google Scholar 

  48. Jiang H, Wang XF, Fang L, Tang C, Zhu Y, Wang X (2005) Upregulation of aldose reductase by homocysteine in type II alveolar epithelial cells. Biochem Biophys Res Commun 337:1084–1091

    Article  PubMed  CAS  Google Scholar 

  49. Hamelet J, Maurin N, Fulchiron R, Delabar JM, Janel N (2007) Mice lacking cystathionine beta synthase have lung fibrosis and air space enlargement. Exp Mol Pathol 83:249–253

    Article  PubMed  CAS  Google Scholar 

  50. Dikshit M, Srivastava R, Srimal RC (1989) Role of free radicals in pulmonary thromboembolism in mice. Thromb Res 55:549–557

    Article  PubMed  CAS  Google Scholar 

  51. Ryrfeldt A, Bannenberg G, Moldeus P (1993) Free radicals and lung disease. Br Med Bull 49:588–603

    PubMed  CAS  Google Scholar 

  52. Jacobsen DW (1998) Homocysteine and vitamins in cardiovascular disease. Clin Chem 44:1833–1843

    PubMed  CAS  Google Scholar 

  53. Loscalzo J (1996) The oxidant stress of hyperhomocyst(e)inemia. J Clin Invest 98:5–7

    Article  PubMed  CAS  Google Scholar 

  54. Mansoor MA, Bergmark C, Svardal AM, Lonning PE, Ueland PM (1995) Redox status and protein binding of plasma homocyst(e)ine and other aminothiols in patients with early-onset peripheral vascular disease. Arterioscler Thromb Vasc Biol 15:232–240

    Article  PubMed  CAS  Google Scholar 

  55. Matté C, Mackedanz V, Stefanello FM, Scherer EB, Andreazza AC, Zanotto C, Moro AM, Garcia SC, Gonçalves CA, Erdtmann B, Salvador M, Wyse AT (2009) Chronic hyperhomocysteinemia alters antioxidant defenses and increases DNA damage in brain and blood os rats: protective effect of folic acid. Neurochem Int 54:7–13

    Article  PubMed  Google Scholar 

  56. Grisham MB, McCord J (1986) Chemistry and cytotoxicity of reactive oxygen metabolites. In: Taylor AE, Matalon S, Ward P (eds) Physiology of oxygen radicals. Williams and Wilkins Co, Baltimore, pp 1–18

    Google Scholar 

  57. Alvarez-Maqueda M, El Bekay R, Monteseirín J, Alba G, Chacón P, Vega A, Santa María C, Tejedo JR, Martín-Nieto J, Bedoya FJ, Pintado E, Sobrino F (2004) Homocysteine enhances superoxide anion release and NADPH oxidase assembly by human neutrophils. Effects on MAPK activation and neutrophil migration. Atherosclerosis 172:229–238

    Article  PubMed  CAS  Google Scholar 

  58. Fridorich I (1986) Biological effects of the superoxide radical. Arch Biochem Biophys 247:1–11

    Article  Google Scholar 

  59. Blum J, Fridorich I (1985) Inactivation of glutathione peroxidase by superoxide radical. Arch Biochem Biophys 240:500–508

    Article  PubMed  CAS  Google Scholar 

  60. Vessey DA, Lee KH (1993) Inactivation of enzymes of the glutathione antioxidant system by treatment of culture human keratinocytes with peroxides. J Invest Dermatol 100:829–833

    Article  PubMed  CAS  Google Scholar 

  61. Heinecke JW, Rosen H, SuzukiI LA, Chait A (1987) The role of sulfur-containing amino acids in superoxide production and modification of low density lipoprotein in arterial smooth muscle cells. J Biol Chem 21:10098–10103

    Google Scholar 

  62. Upchurch GR Jr, Welch GN, Fabian AJ, Freedman JE, Johnson JL, Keaney JF Jr, Loscalzo J (1997) Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 272:17012–17017

    Article  PubMed  CAS  Google Scholar 

  63. Stern F, Berner YN, Polyak Z, Komarnitsky M, Sela BA, Hopp M, Dror Y (2004) Homocysteine effect on protein degradation rates. Clin Biochem 37:1002–1009

    Article  PubMed  CAS  Google Scholar 

  64. Sharma P, Senthilkumar RD, Brahmachari V, Sundaramoorthy E, Mahajan A, Sharma A, Sengupta S (2006) Mining literature for a comprehensive pathway analysis: a case study for retrieval of homocysteine related genes for genetic and epigenetic studies. Lipids Health Dis 5:1–19

    Article  PubMed  Google Scholar 

  65. Kletzien RF, Harris PK, Foellmi LA (1994) Glucose-6-phosphate dehydrogenase: a “housekeeping” enzyme subject to tissue-specific regulation by hormones, nutrients, and oxidant stress. FASEB J 8:174–181

    PubMed  CAS  Google Scholar 

  66. Hashida K, Sakakura Y, Makino N (2002) Kinetic studies on the hydrogen peroxide elimination by cultured PC12 cells: rate limitation by glucose-6-phosphate dehydrogenase. Biochim Biophys Acta 1572:85–90

    PubMed  CAS  Google Scholar 

  67. Rakhit RD, Mojet MH, Marber MS, Duchen MR (2001) Mitochondria as targets for nitric oxide-induced protection during simulated ischemia and reoxygenation in isolated neonatal cardiomyocytes. Circulation 103:2617–2623

    PubMed  CAS  Google Scholar 

  68. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxinitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    Article  PubMed  CAS  Google Scholar 

  69. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–C1437

    PubMed  CAS  Google Scholar 

  70. Eiserich JP, van der Vliet A, Handelman GJ, Halliwell B, Cross CE (1995) Dietary antioxidants and cigarette smoke-induced biomolecular damage: a complex interaction. Am J Clin Nutr 62:S1490–S1500

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, RS, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela T. S. Wyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Cunha, A.A., Ferreira, A.G.K., da Cunha, M.J. et al. Chronic hyperhomocysteinemia induces oxidative damage in the rat lung. Mol Cell Biochem 358, 153–160 (2011). https://doi.org/10.1007/s11010-011-0930-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0930-2

Keywords

Navigation