Skip to main content
Log in

A novel insoluble dietary fiber-based edible paper from Chinese cabbage

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

This study aimed to evaluate the feasibility of using insoluble dietary fiber (IDF) from Chinese cabbage to make a novel edible paper. The structural, physical, and chemical properties and crystallinity of the IDF were first analyzed. The characteristics and fracture surfaces of the handsheets made by the IDF were then studied. The paper performance was finally measured. We found four types of fiber morphology in IDF after the original Chinese cabbage fiber was treated with 8 wt% alkali solution. The IDF-based paper showed a smooth surface, soft and transparent texture, and good strength. The IDF effectively enhanced the paper-packaging performances when it was mixed with wood fiber, although the performance of the IDF-based paper was lower than that of the wood pulp-based paper. The IDF is edible and suitable for direct contact with foods or drugs. Therefore, the IDF-based edible paper has significant development potential for food and pharmaceutical packaging in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IDF:

Insoluble dietary fiber

OF:

Original fiber

SDF:

Soluble dietary fiber

WBC:

Water binding capacity

References

  • Agarwal UP, Reiner RR, Ralph SA (2013) Estimation of cellulose crystallinity of lignocelluloses using near-IR FT-Raman spectroscopy and comparison of the Raman and Segal-WAXS methods. J Agric Food Chem 61:103–113. doi:10.1021/jf304465k

    Article  CAS  Google Scholar 

  • Ang JF (1991) Water retention capacity and viscosity effect of powdered cellulose. J Food Sci 56:1682–1684

    Article  CAS  Google Scholar 

  • Bazzano LA (2008) Effects of soluble dietary fiber on low-density lipoprotein cholesterol and coronary heart disease risk. Curr Atheroscler Rep 10:473–477

    Article  CAS  Google Scholar 

  • Bazzano LA, He J, Ogden LG, Loria CM, Whelton PK, National Health and Nutrition Examination Survey I Epidemiologic Follow-up Study (2003) Dietary fiber intake and reduced risk of coronary heart disease in US men and women: the National Health and Nutrition Examination Survey I Epidemiologic Follow-up Study. Arch Intern Med 163:1897–1904. doi:10.1001/archinte.163.16.1897

    Article  Google Scholar 

  • Bunzel M, Ralph J (2006) NMR characterization of lignins isolated from fruit and vegetable insoluble dietary fiber. J Agric Food Chem 54:8352–8361. doi:10.1021/jf061525z

    Article  CAS  Google Scholar 

  • Cadden A-M (1987) Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers. J Food Sci 52:1595–1599

    Article  Google Scholar 

  • Caliari ÍP, Barbosa MHP, Ferreira SO, Teófilo RF (2017) Estimation of cellulose crystallinity of sugarcane biomass using near infrared spectroscopy and multivariate analysis methods. Carbohydr Polym 158:20–28. doi:10.1016/j.carbpol.2016.12.005

    Article  CAS  Google Scholar 

  • Chau CF, Huang YL, Lee MH (2003) In vitro hypoglycemic effects of different insoluble fiber-rich fractions prepared from the peel of Citrus sinensis L. cv. Liucheng. J Agric Food Chem 51:6623–6626. doi:10.1021/jf034449y

    Article  CAS  Google Scholar 

  • Chen J, Gao D, Yang L, Gao Y (2013) Effect of microfluidization process on the functional properties of insoluble dietary fiber. Food Res Int 54:1821–1827. doi:10.1016/j.foodres.2013.09.025

    Article  CAS  Google Scholar 

  • de Oliveira Taipina M, Ferrarezi MMF, Gonçalves MC (2012) Morphological evolution of curauá fibers under acid hydrolysis. Cellulose 19:1199–1207. doi:10.1007/s10570-012-9715-3

    Article  CAS  Google Scholar 

  • Deschasaux M, Pouchieu C, His M, Hercberg S, Latino-Martel P, Touvier M (2014) Dietary total and insoluble fiber intakes are inversely associated with prostate cancer risk. J Nutr 144:504–510. doi:10.3945/jn.113.189670

    Article  CAS  Google Scholar 

  • Dhingra D, Michael M, Rajput H, Patil RT (2012) Dietary fibre in foods: a review. J Food Sci Technol 49:255–266. doi:10.1007/s13197-011-0365-5

    Article  CAS  Google Scholar 

  • Ding HH, Cui SW, Goff HD, Wang Q, Chen J, Han NF (2014) Soluble polysaccharides from flaxseed kernel as a new source of dietary fibres: extraction and physicochemical characterization. Food Res Int 56:166–173. doi:10.1016/j.foodres.2013.12.005

    Article  CAS  Google Scholar 

  • Dogan H, Hilmioglu ND (2009) Dissolution of cellulose with NMMO by microwave heating. Carbohydr Polym 75:90–94. doi:10.1016/j.carbpol.2008.06.014

    Article  CAS  Google Scholar 

  • Galus S, Kadzinska J (2016) Moisture sensitivity, optical, mechanical and structural properties of whey protein-based edible films incorporated with rapeseed oil. Food Technol Biotechnol 54:78–89. doi:10.17113/ftb.54.01.16.3889

    Article  CAS  Google Scholar 

  • Gómez-Ordóñez E, Jiménez-Escrig A, Rupérez P (2010) Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Res Int 43:2289–2294. doi:10.1016/j.foodres.2010.08.005

    Article  Google Scholar 

  • Gruendel S et al (2006) Carob pulp preparation rich in insoluble dietary fiber and polyphenols enhances lipid oxidation and lowers postprandial acylated ghrelin in humans. J Nutr 136:1533–1538

    CAS  Google Scholar 

  • Guillon F, Champ M (2000) Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Res Int 33:233–245. doi:10.1016/S0963-9969(00)00038-7

    Article  Google Scholar 

  • Isken F, Klaus S, Osterhoff M, Pfeiffer AF, Weickert MO (2010) Effects of long-term soluble vs. insoluble dietary fiber intake on high-fat diet-induced obesity in C57BL/6 J mice. J Nutr Biochem 21:278–284. doi:10.1016/j.jnutbio.2008.12.012

    Article  CAS  Google Scholar 

  • Jiménez A, Fabra MJ, Talens P, Chiralt A (2012) Edible and biodegradable starch films: a review. Food Bioprocess Technol 5:2058–2076. doi:10.1007/s11947-012-0835-4

    Article  Google Scholar 

  • Ju X, Bowden M, Brown EE, Zhang X (2015) An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr Polym 123:476–481. doi:10.1016/j.carbpol.2014.12.071

    Article  CAS  Google Scholar 

  • Kays SE, Barton FE 2nd (2002) Near-infrared analysis of soluble and insoluble dietary fiber fractions of cereal food products. J Agric Food Chem 50:3024–3029

    Article  CAS  Google Scholar 

  • Keshk SM (2015) Effect of different alkaline solutions on crystalline structure of cellulose at different temperatures. Carbohydr Polym 115:658–662. doi:10.1016/j.carbpol.2014.09.045

    Article  CAS  Google Scholar 

  • Khazaei N, Esmaiili M, Djomeh ZE, Ghasemlou M, Jouki M (2014) Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum. Carbohydr Polym 102:199–206. doi:10.1016/j.carbpol.2013.10.062

    Article  CAS  Google Scholar 

  • Komolka P, Gorecka D, Szymandera-Buszka K, Jedrusek-Golinska A, Dziedzic K, Waszkowiak K (2016) Sensory qualities of pastry products enriched with dietary fiber and polyphenolic substances. Acta Sci Pol Technol Aliment 15:161–170. doi:10.17306/J.AFS.2016.2.16

    Article  Google Scholar 

  • López-Perea P, Schwarz PB, Figueroa JDC, Hernández-Estrada ZJ (2012) Effect of β-glucans on viscoelastic properties of barley kernels and their relationship to structure and soluble dietary fibre. J Cereal Sci 56:595–602. doi:10.1016/j.jcs.2012.07.017

    Article  Google Scholar 

  • Maniglia BC, Domingos JR, de Paula RL, Tapia-Blácido DR (2014) Development of bioactive edible film from turmeric dye solvent extraction residue. LWT Food Sci Technol 56:269–277. doi:10.1016/j.lwt.2013.12.011

    Article  CAS  Google Scholar 

  • Marlett JA, Vollendorf NW (1993) Dietary fiber content and composition of vegetables determined by two methods of analysis. J Agric Food Chem 41:1608–1612

    Article  CAS  Google Scholar 

  • Marlett JA, Vollendorf NW (1994) Dietary fiber content and composition of different forms of fruits. Food Chem 51:39–44. doi:10.1016/0308-8146(94)90045-0

    Article  CAS  Google Scholar 

  • Mehta N, Ahlawat SS, Sharma DP, Dabur RS (2015) Novel trends in development of dietary fiber rich meat products—a critical review. J Food Sci Technol 52:633–647. doi:10.1007/s13197-013-1010-2

    Article  CAS  Google Scholar 

  • Nelson RW, Duesberg CA, Ford SL, Feldman EC, Davenport DJ, Kiernan C, Neal L (1998) Effect of dietary insoluble fiber on control of glycemia in dogs with naturally acquired diabetes mellitus. J Am Vet Med Assoc 212:380–386

    CAS  Google Scholar 

  • Nelson RW et al (2000) Effect of dietary insoluble fiber on control of glycemia in cats with naturally acquired diabetes mellitus. J Am Vet Med Assoc 216:1082–1088

    Article  CAS  Google Scholar 

  • Prakongpan T, Nitithamyong A, Luangpituksa P (2002) Extraction and application of dietary fiber and cellulose from pineapple cores. J Food Sci 67:1308–1313

    Article  CAS  Google Scholar 

  • Punna R, Rao Paruchuri U (2004) Effect of maturity and processing on total, insoluble and soluble dietary fiber contents of Indian green leafy vegetables. Int J Food Sci Nutr 55:561–567. doi:10.1080/09637480500126418

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin J, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. doi:10.1177/004051755902901003

    Article  CAS  Google Scholar 

  • Shin D (2012) Analysis of dietary insoluble and soluble fiber contents in school meal. Nutr Res Pract 6:28–34. doi:10.4162/nrp.2012.6.1.28

    Article  CAS  Google Scholar 

  • Wang T, Li C, Liu Y, Li T, Zhang J, Sun Y (2015) Inhibition effects of Chinese cabbage powder on aflatoxin B1-induced liver cancer. Food Chem 186:13–19. doi:10.1016/j.foodchem.2015.02.138

    Article  CAS  Google Scholar 

  • Wang W, Li F, Yu J, Zhou J, Wang H (2017) Effects of coagulation conditions on structure and properties of cellulose-based fibers from aqueous NaOH solvent. Carbohydr Polym 164:118–126. doi:10.1016/j.carbpol.2017.01.054

    Article  CAS  Google Scholar 

  • Yin W, Huang C, Feng L (2004) Determination of total, soluble and insoluble dietary fiber in foods. J Hyg Res 33:331–333

    CAS  Google Scholar 

  • Yue Y, Han J, Han G, Zhang Q, French AD, Wu Q (2015) Characterization of cellulose I/II hybrid fibers isolated from energy cane bagasse during the delignification process: morphology, crystallinity and percentage estimation. Carbohydr Polym 133:438–447. doi:10.1016/j.carbpol.2015.07.058

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science Foundation of Qiqihar University (2011k-m34). The authors thank Yibo Cao, Fengyan Qu, Maomao Li, Li Zhao, Hong Wang, Hongli Xu, and Xianwei Zhang for their assistance in laboratory experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuoyi Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 892 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Ma, Z. A novel insoluble dietary fiber-based edible paper from Chinese cabbage. Cellulose 24, 3411–3419 (2017). https://doi.org/10.1007/s10570-017-1344-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1344-4

Keywords

Navigation