Skip to main content
Log in

Preparation of Fe3O4/chitosan/poly(acrylic acid) composite particles and its application in adsorbing copper ion (II)

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Fe3O4/chitosan/poly(acrylic acid) (Fe3O4/CS/PAA) composite particles, which are reusable, biodegradable and of high adsorption capacity, have been prepared through polymerizing acrylic acid in chitosan and Fe3O4 nanoparticles aqueous solution. By varying in-feed mole ratio of carboxyl to amino group (nc/na) and reactant concentration, the average diameter of Fe3O4/CS/PAA composite particles can be controlled to vary from 100 to 300 nm. FT-IR, XRD and TEM were used to characterize Fe3O4/CS/PAA composite particles. Results showed that Fe3O4 was indeed incorporated into CS/PAA particles. The composite particles showed high efficient to remove copper ions (II) in aqueous solution. Adsorption kinetic studies showed that the adsorption process followed a pseudo-second-order kinetic model and the equilibrium data agreed well with the Langmuir model. The saturated adsorption capacity obtained from the experimental was 193 mg/g in close to proximity to the data 200 mg/g calculated from Langmuir model. The saturated adsorption capacity still retained 100 mg/g after three cycles of adsorption–desorption of copper ions (II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anjali Devi D, Smitha B, Sridhar S, Aminabhavi TM (2005) Pervaporation separation of isopropanol/water mixtures through crosslinked chitosan membranes. J Membr Sci 262(1–2):91–99. doi:10.1016/j.memsci.2005.03.051

    Article  CAS  Google Scholar 

  • Chen Y, Tan H-m (2006) Crosslinked carboxymethylchitosan-g-poly(acrylic acid) copolymer as a novel superabsorbent polymer. Carbohydr Res 341(7):887–896. doi:10.1016/j.carres.2006.01.027

    Article  CAS  Google Scholar 

  • Chen Q, Hu Y, Chen Y, Jiang X, Yang Y (2005) Microstructure Formation and Property of Chitosan-Poly(acrylic acid) Nanoparticles Prepared by Macromolecular Complex. Macromol Biosci 5(10):993–1000. doi:10.1002/mabi.200500098

    Article  CAS  Google Scholar 

  • Chiou M-S, Li H-Y (2002) Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. J Hazard Mater 93(2):233–248. doi:10.1016/s0304-3894(02)00030-4

    Article  CAS  Google Scholar 

  • Crini G, Badot P-M (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33(4):399–447. doi:10.1016/j.progpolymsci.2007.11.001

    Article  CAS  Google Scholar 

  • Guzmán E, Cavallo JA, Chuliá-Jordán R, Gómez Cs, Strumia MC, Ortega F, Rubio RnG (2011) pH-Induced changes in the fabrication of multilayers of poly(acrylic acid) and chitosan: fabrication, properties, and tests as a drug storage and delivery system. Langmuir 27(11):6836–6845. doi:10.1021/la200522r

    Article  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465. doi:10.1016/s0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  • Hu Y, Jiang X, Ding Y, Ge H, Yuan Y, Yang C (2002) Synthesis and characterization of chitosan–poly(acrylic acid) nanoparticles. Biomaterials 23(15):3193–3201. doi:10.1016/s0142-9612(02)00071-6

    Article  CAS  Google Scholar 

  • Hu X-j, Wang J-s, Liu Y-g, Li X, Zeng G-m, Bao Z-l, Zeng X-x, Chen A-w, Long F (2011) Adsorption of chromium (VI) by ethylenediamine-modified cross-linked magnetic chitosan resin: isotherms, kinetics and thermodynamics. J Hazard Mater 185(1):306–314. doi:10.1016/j.jhazmat.2010.09.034

    Article  CAS  Google Scholar 

  • Huang G, Zhang H, Shi JX, Langrish TAG (2009) Adsorption of Chromium (VI) from aqueous solutions using cross-linked magnetic Chitosan beads. Ind Eng Chem Res 48(5):2646–2651. doi:10.1021/ie800814h

    Article  CAS  Google Scholar 

  • Kim T-Y, Park S–S, Cho S-Y (2012) Adsorption characteristics of Reactive Black 5 onto chitosan beads cross-linked with epichlorohydrin. J Ind Eng Chem. doi:10.1016/j.jiec.2012.02.006

    Google Scholar 

  • Liu J, Wang Q, Wang A (2007) Synthesis and characterization of chitosan-g-poly(acrylic acid)/sodium humate superabsorbent. Carbohydr Polym 70(2):166–173. doi:10.1016/j.carbpol.2007.03.015

    Article  CAS  Google Scholar 

  • Liu X, Hu Q, Fang Z, Zhang X, Zhang B (2008) Magnetic Chitosan Nanocomposites: a Useful Recyclable Tool for Heavy Metal Ion Removal. Langmuir 25(1):3–8. doi:10.1021/la802754t

    Article  Google Scholar 

  • Liu J, Zheng Y, Wang W, Wang A (2009) Preparation and swelling properties of semi-IPN hydrogels based on chitosan-g-poly(acrylic acid) and phosphorylated polyvinyl alcohol. J Appl Polym Sci 114(1):643–652. doi:10.1002/app.30592

    Article  CAS  Google Scholar 

  • Liu J, Wang W, Wang A (2011) Synthesis, characterization, and swelling behaviors of chitosan-g-poly(acrylic acid)/poly (vinyl alcohol) semi-IPN superabsorbent hydrogels. Polym Adv Technol 22(5):627–634. doi:10.1002/pat.1558

    Article  CAS  Google Scholar 

  • Mahdavinia GR, Pourjavadi A, Hosseinzadeh H, Zohuriaan MJ (2004) Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted chitosan with salt- and pH-responsiveness properties. Eur Polymer J 40(7):1399–1407. doi:10.1016/j.eurpolymj.2004.01.039

    Article  CAS  Google Scholar 

  • Mi F-L, Sung H-W, Shyu S–S, Su C–C, Peng C-K (2003) Synthesis and characterization of biodegradable TPP/genipin co-crosslinked chitosan gel beads. Polymer 44(21):6521–6530. doi:10.1016/s0032-3861(03)00620-7

    Article  CAS  Google Scholar 

  • Monier M, Abdel-Latif DA (2012) Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions from aqueous solutions. J Hazard Mater 209–210:240–249. doi:10.1016/j.jhazmat.2012.01.015

    Article  Google Scholar 

  • Nge TT, Nogi M, Yano H, Sugiyama J (2010) Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold. Cellulose 17(2):349–363. doi:10.1007/s10570-009-9394-x

    Article  CAS  Google Scholar 

  • Rangel-Mendez JR, Monroy-Zepeda R, Leyva-Ramos E, Diaz-Flores PE, Shirai K (2009) Chitosan selectivity for removing cadmium (II), copper (II), and lead (II) from aqueous phase: pH and organic matter effect. J Hazard Mater 162(1):503–511. doi:10.1016/j.jhazmat.2008.05.073

    Article  CAS  Google Scholar 

  • Šafaříková M, Roy I, Gupta MN, Šafařík I (2003) Magnetic alginate microparticles for purification of α-amylases. J Biotechnol 105(3):255–260. doi:10.1016/j.jbiotec.2003.07.002

    Article  Google Scholar 

  • Santos Sopena LA, Ruiz M, Pestov AV, Sastre AM, Yatluk Y, Guibal E (2010) N-(2-(2-Pyridyl)ethyl)chitosan (PEC) for Pd(II) and Pt(IV) sorption from HCl solutions. Cellulose 18(2):309–325. doi:10.1007/s10570-010-9469-8

    Article  Google Scholar 

  • Shafi KVPM, Ulman A, Dyal A, Yan X, Yang N-L, Estournès C, Fournès L, Wattiaux A, White H, Rafailovich M (2002) Magnetic enhancement of γ-Fe2O3 nanoparticles by sonochemical coating. Chem Mater 14(4):1778–1787. doi:10.1021/cm011535+

    Article  CAS  Google Scholar 

  • Sun T, Xu P, Liu Q, Xue J, Xie W (2003) Graft copolymerization of methacrylic acid onto carboxymethyl chitosan. Eur Polymer J 39(1):189–192. doi:10.1016/s0014-3057(02)00174-x

    Article  CAS  Google Scholar 

  • Vasconcelos HL, Guibal E, Laus R, Vitali L, Fávere VT (2009) Competitive adsorption of Cu(II) and Cd(II) ions on spray-dried chitosan loaded with reactive orange 16. Mater Sci Eng, C 29(2):613–618. doi:10.1016/j.msec.2008.10.022

    Article  CAS  Google Scholar 

  • Wang L-Y, Gu Y-H, Zhou Q-Z, Ma G-H, Wan Y-H, Su Z-G (2006) Preparation and characterization of uniform-sized chitosan microspheres containing insulin by membrane emulsification and a two-step solidification process. Colloids Surf B 50(2):126–135. doi:10.1016/j.colsurfb.2006.05.006

    Article  CAS  Google Scholar 

  • Wang G, Liu J, Wang X, Xie Z, Deng N (2009a) Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J Hazard Mater 168(2–3):1053–1058. doi:10.1016/j.jhazmat.2009.02.157

    Article  CAS  Google Scholar 

  • Wang X, Zheng Y, Wang A (2009b) Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites. J Hazard Mater 168(2–3):970–977. doi:10.1016/j.jhazmat.2009.02.120

    Article  CAS  Google Scholar 

  • Wang J-W, Chen C-Y, Kuo Y-M (2010) Effect of experimental parameters on the formation of chitosan-poly(acrylic acid) nanofibrous scaffolds and evaluation of their potential application as DNA carrier. J Appl Polym Sci 115(3):1769–1780. doi:10.1002/app.31287

    Article  CAS  Google Scholar 

  • Wang H, Li C, Bao C, Liu L, Liu X (2011) Adsorption and determination of Pd(II) and Pt(IV) onto 3′-Nitro-4-amino azobenzene modified chitosan. J Chem Eng Data 56(11):4203–4207. doi:10.1021/je2007154

    Article  CAS  Google Scholar 

  • Zhang J, Wang A (2010) Adsorption of Pb(II) from aqueous solution by Chitosan-g-poly (acrylic acid)/Attapulgite/sodium humate composite hydrogels. J Chem Eng Data 55(7):2379–2384. doi:10.1021/je900813z

    Article  CAS  Google Scholar 

  • Zhang J, Wang Q, Wang A (2007) Synthesis and characterization of chitosan-g-poly (acrylic acid)/attapulgite superabsorbent composites. Carbohydr Polym 68(2):367–374. doi:10.1016/j.carbpol.2006.11.018

    Article  CAS  Google Scholar 

  • Zhou L, Xu J, Liang X, Liu Z (2010) Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine. J Hazard Mater 182(1–3):518–524. doi:10.1016/j.jhazmat.2010.06.062

    Article  CAS  Google Scholar 

  • Zhou L, Jin J, Liu Z, Liang X, Shang C (2011) Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles. J Hazard Mater 185(2–3):1045–1052. doi:10.1016/j.jhazmat.2010.10.012

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank for jointly supporting by the 211 Project of Anhui University, Anhui Provincial Natural Science Foundation (1208085QB38) and the foundation for outstanding young talent in University of Anhui Province (2012SQRL024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiFeng Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S., Zhou, Y., Nie, W. et al. Preparation of Fe3O4/chitosan/poly(acrylic acid) composite particles and its application in adsorbing copper ion (II). Cellulose 19, 2081–2091 (2012). https://doi.org/10.1007/s10570-012-9783-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9783-4

Keywords

Navigation